numerical tests
Recently Published Documents


TOTAL DOCUMENTS

804
(FIVE YEARS 235)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Bangyu Wu ◽  
Wenzhuo Tan ◽  
Wenhao Xu ◽  
Bo Li

The large computational memory requirement is an important issue in 3D large-scale wave modeling, especially for GPU calculation. Based on the observation that wave propagation velocity tends to gradually increase with depth, we propose a 3D trapezoid-grid finite-difference time-domain (FDTD) method to achieve the reduction of memory usage without a significant increase of computational time or a decrease of modeling accuracy. It adopts the size-increasing trapezoid-grid mesh to fit the increasing trend of seismic wave velocity in depth, which can significantly reduce the oversampling in the high-velocity region. The trapezoid coordinate transformation is used to alleviate the difficulty of processing ununiform grids. We derive the 3D acoustic equation in the new trapezoid coordinate system and adopt the corresponding trapezoid-grid convolutional perfectly matched layer (CPML) absorbing boundary condition to eliminate the artificial boundary reflection. Stability analysis is given to generate stable modeling results. Numerical tests on the 3D homogenous model verify the effectiveness of our method and the trapezoid-grid CPML absorbing boundary condition, while numerical tests on the SEG/EAGE overthrust model indicate that for comparable computational time and accuracy, our method can achieve about 50% reduction on memory usage compared with those on the uniform-grid FDTD method.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 177
Author(s):  
Mateusz Zychlewicz ◽  
Radoslaw Stanislawski ◽  
Marcin Kaminski

In this paper, an adaptive speed controller of the electrical drive is presented. The main part of the control structure is based on the Recurrent Wavelet Neural Network (RWNN). The mechanical part of the plant is considered as an elastic connection of two DC machines. Oscillation damping and robustness against parameter changes are achieved using network parameters updates (online). Moreover, the various combinations of the feedbacks from the state variables are considered. The initial weights of the neural network and the additional gains are tuned using a modified version of the Grey Wolf Optimizer. Convergence of the calculation is forced using a new definition. For theoretical analysis, numerical tests are presented. Then, the RWNN is implemented in a dSPACE card. Finally, the simulation results are verified experimentally.


Author(s):  
Dmitry Kolomenskiy ◽  
Ryo Onishi ◽  
Hitoshi Uehara

Abstract A wavelet-based method for compression of three-dimensional simulation data is presented and its software framework is described. It uses wavelet decomposition and subsequent range coding with quantization suitable for floating-point data. The effectiveness of this method is demonstrated by applying it to example numerical tests, ranging from idealized configurations to realistic global-scale simulations. The novelty of this study is in its focus on assessing the impact of compression on post-processing and restart of numerical simulations. Graphical abstract


Author(s):  
Manuel Radons ◽  
Siegfried M. Rump

AbstractLet A be a real $$n\times n$$ n × n matrix and $$z,b\in \mathbb R^n$$ z , b ∈ R n . The piecewise linear equation system $$z-A\vert z\vert = b$$ z - A | z | = b is called an absolute value equation. In this note we consider two solvers for uniquely solvable instances of the latter problem, one direct, one semi-iterative. We slightly extend the existing correctness, resp. convergence, results for the latter algorithms and provide numerical tests.


OR Spectrum ◽  
2021 ◽  
Author(s):  
Herbert Meyr ◽  
Mirko Kiel

AbstractA real-world planning problem of a printing company is presented where different sorts of a consumer goods’ label are printed on a roll of paper with sufficient length. The printer utilizes a printing plate to always print several labels of same size and shape (but possibly different imprint) in parallel on adjacent lanes of the paper. It can be decided which sort is printed on which (lane of a) plate and how long the printer runs using a single plate. A sort can be assigned to several lanes of the same plate, but not to several plates. Designing a plate and installing it on the printer incurs fixed setup costs. If more labels are produced than actually needed, each surplus label is assumed to be “scrap”. Since demand for the different sorts may be heterogeneous and since the number of sorts is usually much higher than the number of lanes, the problem is to build “printing blocks”, i.e., to decide how many and which plates to design and how long to run the printer with a certain plate so that customer demand is satisfied with minimum costs for setups and scrap. This industrial application is modeled as an extension of a so-called job splitting problem which is solved exactly and by various decomposition heuristics, partly basing on dynamic programming. Numerical tests compare both approaches with further straightforward heuristics and demonstrate the benefits of decomposition and dynamic programming for large problem instances.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jie Liu ◽  
Yan-Bin Song ◽  
Yue-Mao Zhao

A discrete element method code was used to investigate the damage characteristics of jointed rock masses under repetitive impact loading. The Flat-Joint Contact Model (FJCM) in the two-dimensional particle flow code (PFC2D) was used to calibrate the microparameters that control the macroscopic behavior of the rock. The relationship between macro- and microparameters by a series of uniaxial direct tension and compression numerical tests based on an orthogonal experimental design method was obtained to calibrate the microparameters accurately. Then, the Synthetic Rock Mass (SRM) method that incorporates joints into the calibrated particle model was used to construct large-scale jointed rock mass specimens, and the repetitive drop hammer impact numerical tests on SRM specimens with different numbers of horizontal joints and dip angle joints were carried out to study the damage evolution, stress wave propagation, and energy dissipation characteristics. The results show that the greater the number of joints, the greater the number of cracks generated, the greater the degree of damage, and the more energy dissipated for rock masses with horizontal joints. The greater the dip angle of joints, the less the number of cracks generated, the less the degree of damage, and the less energy dissipated for rock masses with different dip angles of joints. The impact-induced stress waves will be reflected when they encounter preexisting joints in the process of propagation. When the reflected stress waves meet with subsequent stress waves, the stress waves will change from compressional waves to tensile waves, producing tensile damage inside rock masses.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-12
Author(s):  
Widya Apriani ◽  
Anggi Barus ◽  
Fadrizal Lubis

One of the obstacles in laboratory testing is the availability of testing capacity. So that the similitude method was developed which aims to replicate the state of the prototype by scaling the variables so that they can be tested in the laboratory. The purpose of this study was to determine the difference between the results of numerical tests and experimental tests on the response of the open frame portal structure and the braced portal structure to the perpindahan parameters and the driftt ratio of the steel portal structure in earthquake buildings. The method used in this research is the experimental test method. From the analysis results, the largest perpindahan difference between the numerical test and the experimental test of the open frame portal structure is on the 4th floor, with a difference of 21,8 mm, while the largest perpindahan difference in the braced structure is on the 6th floor with a difference of 14,54 mm. The highest perpindahan difference is between numerical tests and experimental tests that occur on the open frame structure are on the 3rd, 4th, and 5th floors while those that occur on the braced structure are on the 5th, 6th, and 7th floors but the experimental perpindahan test is still within the permit limits for structural planning and if reviewed from the driftt ratio results, the results exceed the allowable driftt ratio limit of 2% of the height of each building level located on the 1st and 6th floors of the open frame portal structure and on the 5th floor of the braced portal structure.


2021 ◽  
Author(s):  
Jacek Gondzio ◽  
Matti Lassas ◽  
Salla-Maaria Latva-Äijö ◽  
Samuli Siltanen ◽  
Filippo Zanetti

Abstract Dual-energy X-ray tomography is considered in a context where the target under imaging consists of two distinct materials. The materials are assumed to be possibly intertwined in space, but at any given location there is only one material present. Further, two X-ray energies are chosen so that there is a clear difference in the spectral dependence of the attenuation coefficients of the two materials. A novel regularizer is presented for the inverse problem of reconstructing separate tomographic images for the two materials. A combination of two things, (a) non-negativity constraint, and (b) penalty term containing the inner product between the two material images, promotes the presence of at most one material in a given pixel. A preconditioned interior point method is derived for the minimization of the regularization functional. Numerical tests with digital phantoms suggest that the new algorithm outperforms the baseline method, Joint Total Variation regularization, in terms of correctly material-characterized pixels. While the method is tested only in a two-dimensional setting with two materials and two energies, the approach readily generalizes to three dimensions and more materials. The number of materials just needs to match the number of energies used in imaging.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7429
Author(s):  
Marek Johanides ◽  
David Mikolasek ◽  
Antonin Lokaj ◽  
Petr Mynarcik ◽  
Zuzana Marcalikova ◽  
...  

With the development of wooden structures and buildings, there is a need to research physical and numerical tests of wood-based structures. The presented research is focused on construction and computational approaches for new types of joints to use in wooden structures, particularly glued lamella elements made of wood and wood-based composites. This article focuses on improving the frame connection of a wooden post and a beam with the use of fasteners to ensure better load-bearing capacity and stiffness of the structure. In common practice, bolts or a combination of bolts and pins are used for this type of connection. The aim is to replace these commonly used fasteners with modern ones, namely full thread screws. The aim is also to shorten and simplify the assembly time in order to improve the load-bearing capacity and rigidity of this type of frame connection. Two variations of the experimental test were tested in this research. The first contained bolts and pins as connecting means and the second contained the connecting means of a full threaded screw. Each experiment contained a total of two tests. For a detailed study of the problem, we used a 2D or 3D computational model that models individual components, including fasteners.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7409
Author(s):  
Marcin Bochenski ◽  
Jaroslaw Gawryluk ◽  
Andrzej Teter

In this study, we discuss the effects of the diameter and position of a hole on the dynamic response of a thin-walled cantilever beam made of carbon-epoxy laminate. Eigen-frequencies and corresponding global and local eigen-modes were considered, where deformations of the beam wall were dominant, without significant deformation of the beam axis. The study was focused on the circumferentially uniform stiffness (CUS) beam configuration. The laminate layers were arranged as [90/15(3)/90/15(3)/90]T. The finite element method was employed for numerical tests, using the Abaqus software package. Moreover, a few numerical results of the structure’s behaviour, with and without a hole, were verified experimentally. The experimental eigen-frequencies and the corresponding modes were obtained using an experimental modal analysis, comprising the LMS system with modal hammer. We found that the size and location of the hole affected the eigen-frequencies and corresponding modes. Furthermore, even a small hole in a beam could significantly change the shape of its local modes. The numerical and experimental results were observed to have high qualitative compliance.


Sign in / Sign up

Export Citation Format

Share Document