FINITELY GENERATED MODULES OVER POLYCYCLIC GROUPS

1980 ◽  
Vol 31 (1) ◽  
pp. 109-127 ◽  
Author(s):  
B. A. F. WEHRFRITZ
Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


2016 ◽  
Vol 23 (04) ◽  
pp. 701-720 ◽  
Author(s):  
Xiangui Zhao ◽  
Yang Zhang

Differential difference algebras are generalizations of polynomial algebras, quantum planes, and Ore extensions of automorphism type and of derivation type. In this paper, we investigate the Gelfand-Kirillov dimension of a finitely generated module over a differential difference algebra through a computational method: Gröbner-Shirshov basis method. We develop the Gröbner-Shirshov basis theory of differential difference algebras, and of finitely generated modules over differential difference algebras, respectively. Then, via Gröbner-Shirshov bases, we give algorithms for computing the Gelfand-Kirillov dimensions of cyclic modules and finitely generated modules over differential difference algebras.


1984 ◽  
Vol 12 (15) ◽  
pp. 1795-1812 ◽  
Author(s):  
Luigi Salce ◽  
Paolo Zanardo

2018 ◽  
Vol 17 (11) ◽  
pp. 1850202 ◽  
Author(s):  
Ahad Rahimi

Let [Formula: see text] be a Noetherian local ring and [Formula: see text] a finitely generated [Formula: see text]-module. We say [Formula: see text] has maximal depth if there is an associated prime [Formula: see text] of [Formula: see text] such that depth [Formula: see text]. In this paper, we study finitely generated modules with maximal depth. It is shown that the maximal depth property is preserved under some important module operations. Generalized Cohen–Macaulay modules with maximal depth are classified. Finally, the attached primes of [Formula: see text] are considered for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document