Primitivity in representations of polycyclic groups

Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?

2007 ◽  
Vol 17 (05n06) ◽  
pp. 1073-1083 ◽  
Author(s):  
AVINOAM MANN ◽  
DAN SEGAL

The breadth of a polycyclic group is the maximum of h(G) - h(CG(x)) for x ∈ G, where h(G) is the Hirsch length. We prove a number of results that bound the class of a finitely generated nilpotent group, and the Hirsch length of the derived group in a polycyclic group, in terms of the breadth. These results are analogues of well-known results in finite group theory.


2018 ◽  
Vol 2018 (738) ◽  
pp. 281-298 ◽  
Author(s):  
Caleb Eckhardt ◽  
Paul McKenney

Abstract We show that group C*-algebras of finitely generated, nilpotent groups have finite nuclear dimension. It then follows, from a string of deep results, that the C*-algebra A generated by an irreducible representation of such a group has decomposition rank at most 3. If, in addition, A satisfies the universal coefficient theorem, another string of deep results shows it is classifiable by its ordered K-theory and is approximately subhomogeneous. We observe that all C*-algebras generated by faithful irreducible representations of finitely generated, torsion free nilpotent groups satisfy the universal coefficient theorem.


Author(s):  
D. H. McLain ◽  
P. Hall

1. If P is any property of groups, then we say that a group G is ‘locally P’ if every finitely generated subgroup of G satisfies P. In this paper we shall be chiefly concerned with the case when P is the property of being nilpotent, and will examine some properties of nilpotent groups which also hold for locally nilpotent groups. Examples of locally nilpotent groups are the locally finite p-groups (groups such that every finite subset is contained in a finite group of order a power of the prime p); indeed, every periodic locally nilpotent group is the direct product of locally finite p-groups.


1989 ◽  
Vol 40 (1) ◽  
pp. 119-122
Author(s):  
Robert J. Hursey

A group G is torsion-free, finitely generated, and nilpotent if and only if G is a supersolvable R-group. An ordered polycylic group G is nilpotent if and only if there exists an order on G with respect to which the number of convex subgroups is one more than the length of G. If the factors of the upper central series of a torsion-free nilpotent group G are locally cyclic, then consecutive terms of the series are jumps, and the terms are absolutely convex subgroups.


1970 ◽  
Vol 22 (4) ◽  
pp. 875-877 ◽  
Author(s):  
Narain Gupta

Let denote the variety of all groups which are extensions of a nilpotent-of-class-c group by a nilpotent-of-class-d group, and let denote the variety of all metabelian groups. The main result of this paper is the following theorem.THEOREM. Let be a subvariety of which does not contain . Then every -group is an extension of a group of finite exponent by a nilpotent group by a group of finite exponent. In particular, a finitely generated torsion-free -group is a nilpotent-by-finite group.This generalizes the main theorem of Ŝmel′kin [4], where the same result is proved for subvarieties of , where is the variety of abelian groups. See also Lewin and Lewin [2] for a related discussion.


2010 ◽  
Vol 17 (03) ◽  
pp. 487-494 ◽  
Author(s):  
Gérard Endimioni ◽  
Carmela Sica

In this paper we show that some finiteness properties on a centralizer of a particular subgroup can be inherited by the whole group. Among other things, we prove the following characterization of polycyclic groups: a soluble group G is polycyclic if and only if it contains a finitely generated subgroup H, formed by bounded left Engel elements, whose centralizer CG(H) is polycyclic. In the context of Černikov groups we obtain a more general result: a radical group is a Černikov group if and only if it contains a finitely generated subgroup, formed by left Engel elements, whose centralizer is a Černikov group. The aforementioned results generalize a theorem by Onishchuk and Zaĭtsev about the centralizer of a finitely generated subgroup in a nilpotent group.


Author(s):  
A.V. Tushev

We develop some tecniques whish allow us to apply the methods of commutative algebra for studing the representations of nilpotent groups. Using these methods, in particular, we show that any irreducible representation of a finitely generated nilpotent group G over a finitely generated field of characteristic zero is induced from a primitive representation of some subgroup of G.


1977 ◽  
Vol 81 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Daniel Segal

1. Introduction. It is well known that every finite-dimensional irreducible representation of a nilpotent group over an algebraically closed field is monomial, that is induced from a 1-dimensional representation of some subgroup. However, even a finitely generated nilpotent group in general has infinite-dimensional irreducible representations, and as a first step towards an understanding of these one wants to discover whether they too are necessarily monomial. The main point of this note is to show how far they can fail to be so.


1981 ◽  
Vol 22 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Kenneth A. Brown

Recall that a Noetherian ring R is a Hilbert ring if the Jacobson radical of every factor ring of R is nilpotent. As one of the main results of [13], J. E. Roseblade proved that if J is a commutative Hilbert ring and G is a polycyclic-by-finite group then JG is a Hilbert ring. The main theorem of this paper is a generalisation of this result in the case where all the field images of J are absolute fields—we shall say that J is absolutely Hilbert. The result is stated in terms of the (Gabriel–Rentschler–) Krull dimension; the definition and basic properties of this may be found in [5]. Let M be a finitely generated right module over the ring R. We write AnnR(M) (or just Ann(M)) for the ideal {r ∈ R: Mr = 0}, the annihilator of M in R. If M is also a left module, its left annihilator will be denoted l-AnnR(M). If R is a group ring JG, put


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


Sign in / Sign up

Export Citation Format

Share Document