scholarly journals Posterior-based proposals for speeding up Markov chain Monte Carlo

2019 ◽  
Vol 6 (11) ◽  
pp. 190619 ◽  
Author(s):  
C. M. Pooley ◽  
S. C. Bishop ◽  
A. Doeschl-Wilson ◽  
G. Marion

Markov chain Monte Carlo (MCMC) is widely used for Bayesian inference in models of complex systems. Performance, however, is often unsatisfactory in models with many latent variables due to so-called poor mixing, necessitating the development of application-specific implementations. This paper introduces ‘posterior-based proposals' (PBPs), a new type of MCMC update applicable to a huge class of statistical models (whose conditional dependence structures are represented by directed acyclic graphs). PBPs generate large joint updates in parameter and latent variable space, while retaining good acceptance rates (typically 33%). Evaluation against other approaches (from standard Gibbs/random walk updates to state-of-the-art Hamiltonian and particle MCMC methods) was carried out for widely varying model types: an individual-based model for disease diagnostic test data, a financial stochastic volatility model, a mixed model used in statistical genetics and a population model used in ecology. While different methods worked better or worse in different scenarios, PBPs were found to be either near to the fastest or significantly faster than the next best approach (by up to a factor of 10). PBPs, therefore, represent an additional general purpose technique that can be usefully applied in a wide variety of contexts.

2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Nima Nonejad

AbstractThis paper details particle Markov chain Monte Carlo (PMCMC) techniques for analysis of unobserved component time series models using several economic data sets. The objective of this paper is to explain the basics of the methodology and provide computational applications that justify applying PMCMC in practice. For instance, we use PMCMC to estimate a stochastic volatility model with a leverage effect, Student-t distributed errors or serial dependence. We also model time series characteristics of monthly US inflation rate by considering a heteroskedastic ARFIMA model where heteroskedasticity is specified by means of a Gaussian stochastic volatility process.


Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 735-743 ◽  
Author(s):  
Pekka Uimari ◽  
Ina Hoeschele

A Bayesian method for mapping linked quantitative trait loci (QTL) using multiple linked genetic markers is presented. Parameter estimation and hypothesis testing was implemented via Markov chain Monte Carlo (MCMC) algorithms. Parameters included were allele frequencies and substitution effects for two biallelic QTL, map positions of the QTL and markers, allele frequencies of the markers, and polygenic and residual variances. Missing data were polygenic effects and multi-locus marker-QTL genotypes. Three different MCMC schemes for testing the presence of a single or two linked QTL on the chromosome were compared. The first approach includes a model indicator variable representing two unlinked QTL affecting the trait, one linked and one unlinked QTL, or both QTL linked with the markers. The second approach incorporates an indicator variable for each QTL into the model for phenotype, allowing or not allowing for a substitution effect of a QTL on phenotype, and the third approach is based on model determination by reversible jump MCMC. Methods were evaluated empirically by analyzing simulated granddaughter designs. All methods identified correctly a second, linked QTL and did not reject the one-QTL model when there was only a single QTL and no additional or an unlinked QTL.


Author(s):  
Vassilios Stathopoulos ◽  
Mark A. Girolami

Bayesian analysis for Markov jump processes (MJPs) is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding, thus its applicability is limited to a small class of problems. In this paper, we describe the application of Riemann manifold Markov chain Monte Carlo (MCMC) methods using an approximation to the likelihood of the MJP that is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient whereas the convergence rate and mixing of the chains allow for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology.


2013 ◽  
Vol 9 (S298) ◽  
pp. 441-441
Author(s):  
Yihan Song ◽  
Ali Luo ◽  
Yongheng Zhao

AbstractStellar radial velocity is estimated by using template fitting and Markov Chain Monte Carlo(MCMC) methods. This method works on the LAMOST stellar spectra. The MCMC simulation generates a probability distribution of the RV. The RV error can also computed from distribution.


Sign in / Sign up

Export Citation Format

Share Document