Transneuronal degeneration of beta retinal ganglion cells in the cat

Transneuronal retrograde degeneration of retinal ganglion cells was investigated following neonatal visual cortex ablation in the cat. After a survival time of at least 18 months, retinal ganglion cells projecting to the thalamus were labelled by retrograde transport of horseradish peroxidase. Filled ganglion cells were classified into α , β and γ types on the basis of dendritic morphology. In normal cats, α cells made up 8-10% of the total population in the sample area, β cells made up 64-67% and γ cells made up 23-27%. In retinae of visual cortex-ablated cats, normal numbers of α and γ cells were present, but the β cell population was depleted by 90% of normal. Thalamic projections of surviving retinal ganglion cells were investigated by anterograde transport of tritiated proline injected into the eye. In these animals, ablation of visual cortex resulted in almost complete degeneration of laminae A and A1 of the dorsal lateral geniculate nucleus. In the radioautographic material, projections from the retina to the degenerated parts of laminae A and A1 were barely detectable. Survival of some ganglion cell populations and death of others after neonatal visual cortex ablation may be explained in terms of the pattern of projections of the different cell types. We conclude that the majority of β cells degenerate following visual cortex ablation because of removal of cells in the dorsal lateral geniculate nucleus which form their sole or principal target. Alpha and γ cells and 10% of β -cells survive because of extensive collateral projections to targets other than cells of the laminae A and A1 of dorsal lateral geniculate nucleus.

2017 ◽  
Vol 34 ◽  
Author(s):  
ABOOZAR MONAVARFESHANI ◽  
UBADAH SABBAGH ◽  
MICHAEL A. FOX

AbstractOften mislabeled as a simple relay of sensory information, the thalamus is a complicated structure with diverse functions. This diversity is exemplified by roles visual thalamus plays in processing and transmitting light-derived stimuli. Such light-derived signals are transmitted to the thalamus by retinal ganglion cells (RGCs), the sole projection neurons of the retina. Axons from RGCs innervate more than ten distinct nuclei within thalamus, including those of the lateral geniculate complex. Nuclei within the lateral geniculate complex of nocturnal rodents, which include the dorsal lateral geniculate nucleus (dLGN), ventral lateral geniculate nucleus (vLGN), and intergeniculate leaflet (IGL), are each densely innervated by retinal projections, yet, exhibit distinct cytoarchitecture and connectivity. These features suggest that each nucleus within this complex plays a unique role in processing and transmitting light-derived signals. Here, we review the diverse cytoarchitecture and connectivity of these nuclei in nocturnal rodents, in an effort to highlight roles for dLGN in vision and for vLGN and IGL in visuomotor, vestibular, ocular, and circadian function.


2000 ◽  
Vol 17 (6) ◽  
pp. 871-885 ◽  
Author(s):  
G.T. EINEVOLL ◽  
P. HEGGELUND

Spatial receptive fields of relay cells in dorsal lateral geniculate nucleus (dLGN) have commonly been modeled as a difference of two Gaussian functions. We present alternative models for dLGN cells which take known physiological couplings between retina and dLGN and within dLGN into account. The models include excitatory input from a single retinal ganglion cell and feedforward inhibition via intrageniculate interneurons. Mathematical formulas describing the receptive field and response to circular spot stimuli are found both for models with a finite and an infinite number of ganglion-cell inputs to dLGN neurons. The advantage of these models compared to the common difference-of-Gaussians model is that they, in addition to providing mathematical descriptions of the receptive fields of dLGN neurons, also make explicit contributions from the geniculate circuit. Moreover, the model parameters have direct physiological relevance and can be manipulated and measured experimentally. The discrete model is applied to recently published data (Ruksenas et al., 2000) on response versus spot-diameter curves for dLGN cells and for the retinal input to the cell (S-potentials). The models are found to account well for the results for the X-cells in these experiments. Moreover, predictions from the discrete model regarding receptive-field sizes of interneurons, the amount of center-surround antagonism for interneurons compared to relay cells, and distance between neighboring retinal ganglion cells providing input to interneurons, are all compatible with data available in the literature.


1996 ◽  
Vol 13 (6) ◽  
pp. 1089-1097 ◽  
Author(s):  
Chun Wang ◽  
B. Dreher ◽  
W. Burke

AbstractThe aim of this project was to investigate the interaction between Y retinal ganglion cells and the cells of the dorsal lateral geniculate nucleus (LGNd) of the cat, with particular reference to center-surround antagonism and intrageniculate inhibition. Responses of cells in the LGNd were studied by stimulating the retina with spots of light of constant contrast but varying size. The peak discharges of nonlagged X (XN) cells were strongly suppressed with increase in spot size but the responses of lagged X (XL) cells and nonlagged Y (YN) cells were inhibited much less strongly. The effect of the Y system on these responses was examined by producing a selective block of conduction in Y fibers in one optic nerve by means of a pressure cuff (Y-blocking). These effects were assessed by measuring the peak discharge rates and by calculation of a “peak suppression index.” Y-blocking had no significant effect on the peak suppression index of XL, cells in either lamina or on YN cells in the normal (not Y-blocked) lamina but had significant effects on the responses of XN cells, causing a decrease in peak suppression index, both for cells in laminae receiving their principal excitatory input from the Y-blocked eye (both lamina A and lamina A1 ) as well as those in lamina A (but not lamina A1 ) receiving their excitatory input from the normal eye. These effects were obtained with relatively large spots of light. Thus Y optic fibers have both intralaminar (monocular) and interlaminar (binocular) inhibitory effects on XN cells. In addition to these suppressive effects, the experiments also show that ipsilaterally projecting Y fibers have facilitatory effects on XN cells in lamina A when small spots of light, about optimal size for the XN cell, are used. These results suggest that the Y system plays a powerful role in shaping the responses of XN cells, possibly enhancing visual acuity.


Sign in / Sign up

Export Citation Format

Share Document