scholarly journals Non-convex entropies for conservation laws with involutions

Author(s):  
Constantine M. Dafermos

The paper discusses systems of conservation laws endowed with involutions and contingent entropies. Under the assumption that the contingent entropy function is convex merely in the direction of a cone in state space, associated with the involution, it is shown that the Cauchy problem is locally well posed in the class of classical solutions, and that classical solutions are unique and stable even within the broader class of weak solutions that satisfy an entropy inequality. This is on a par with the classical theory of solutions to hyperbolic systems of conservation laws endowed with a convex entropy. The equations of elastodynamics provide the prototypical example for the above setting.

2015 ◽  
Vol 12 (04) ◽  
pp. 787-797 ◽  
Author(s):  
Cleopatra Christoforou

General hyperbolic systems of balance laws with inhomogeneous flux and source are studied. Global existence of entropy weak solutions to the Cauchy problem is established for small BV data under appropriate assumptions on the decay of the flux and the source with respect to space and time. There is neither a hypothesis about equilibrium solution nor about the dependence of the source on the state vector as previous results have assumed.


Sign in / Sign up

Export Citation Format

Share Document