well posed
Recently Published Documents


TOTAL DOCUMENTS

961
(FIVE YEARS 196)

H-INDEX

47
(FIVE YEARS 3)

Author(s):  
Misbah Iram Bloach ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

This work emphasizes in presenting new class of equilibrium-like problems, termed as equilibrium-like problems with trifunction. We establish some metric characterizations for the well-posed triequilibrium-like problems. We give some conditions under which the equilibrium-like problems are strongly well-posed. Our results, which give essential and adequate conditions to the well-posedness of triequilibrium-like problems, are acquired by utilizing the assumption of pseudomonotonicity. Technique and ideas of this paper inspire further research in this dynamic field.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Huy Tuan Nguyen ◽  
Nguyen Anh Tuan ◽  
Chao Yang

<p style='text-indent:20px;'>This article is a comparative study on an initial-boundary value problem for a class of semilinear pseudo-parabolic equations with the fractional Caputo derivative, also called the fractional Sobolev-Galpern type equations. The purpose of this work is to reveal the influence of the degree of the source nonlinearity on the well-posedness of the solution. By considering four different types of nonlinearities, we derive the global well-posedness of mild solutions to the problem corresponding to the four cases of the nonlinear source terms. For the advection source function case, we apply a nontrivial limit technique for singular integral and some appropriate choices of weighted Banach space to prove the global existence result. For the gradient nonlinearity as a local Lipschitzian, we use the Cauchy sequence technique to show that the solution either exists globally in time or blows up at finite time. For the polynomial form nonlinearity, by assuming the smallness of the initial data we derive the global well-posed results. And for the case of exponential nonlinearity in two-dimensional space, we derive the global well-posedness by additionally using an Orlicz space.</p>


Author(s):  
Katia Colaneri ◽  
Tiziano De Angelis

In this paper, we introduce and solve a class of optimal stopping problems of recursive type. In particular, the stopping payoff depends directly on the value function of the problem itself. In a multidimensional Markovian setting, we show that the problem is well posed in the sense that the value is indeed the unique solution to a fixed point problem in a suitable space of continuous functions, and an optimal stopping time exists. We then apply our class of problems to a model for stock trading in two different market venues, and we determine the optimal stopping rule in that case.


2021 ◽  
Vol 933 ◽  
Author(s):  
Emma C. Edwards ◽  
Dick K.-P. Yue

We propose a scientifically rigorous framework to find realistic optimal geometries of wave energy converters (WECs). For specificity, we assume WECs to be axisymmetric point absorbers in a monochromatic unidirectional incident wave, all within the context of linearised potential theory. We consider separately the problem of a WEC moving and extracting wave energy in heave only and then the more general case of motion and extraction in combined heave, surge and pitch. We describe the axisymmetric geometries using polynomial basis functions, allowing for discontinuities in slope. Our framework involves ensuring maximum power, specifying practical motion constraints and then minimising surface area (as a proxy for cost). The framework is robust and well-posed, and the optimisation produces feasible WEC geometries. Using the proposed framework, we develop a systematic computational and theoretical approach, and we obtain results and insights for the optimal WEC geometries. The optimisation process is sped up significantly by a new theoretical result to obtain roots of the heave resonance equation. For both the heave-only, and the heave-surge-pitch combined problems, we find that geometries which protrude outward below the waterline are generally optimal. These optimal geometries have up to 73 % less surface area and 90 % less volume than the optimal cylinders which extract the same power.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 750-786
Author(s):  
Samer Israwi ◽  
Henrik Kalisch ◽  
Theodoros Katsaounis ◽  
Dimitrios Mitsotakis

Abstract The simulation of long, nonlinear dispersive waves in bounded domains usually requires the use of slip-wall boundary conditions. Boussinesq systems appearing in the literature are generally not well-posed when such boundary conditions are imposed, or if they are well-posed it is very cumbersome to implement the boundary conditions in numerical approximations. In the present paper a new Boussinesq system is proposed for the study of long waves of small amplitude in a basin when slip-wall boundary conditions are required. The new system is derived using asymptotic techniques under the assumption of small bathymetric variations, and a mathematical proof of well-posedness for the new system is developed. The new system is also solved numerically using a Galerkin finite-element method, where the boundary conditions are imposed with the help of Nitsche’s method. Convergence of the numerical method is analysed, and precise error estimates are provided. The method is then implemented, and the convergence is verified using numerical experiments. Numerical simulations for solitary waves shoaling on a plane slope are also presented. The results are compared to experimental data, and excellent agreement is found.


Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 360
Author(s):  
Douglas Lenseth ◽  
Boris Goldfarb

We address the basic question in discrete Morse theory of combining discrete gradient fields that are partially defined on subsets of the given complex. This is a well-posed question when the discrete gradient field V is generated using a fixed algorithm which has a local nature. One example is ProcessLowerStars, a widely used algorithm for computing persistent homology associated to a grey-scale image in 2D or 3D. While the algorithm for V may be inherently local, being computed within stars of vertices and so embarrassingly parallelizable, in practical use, it is natural to want to distribute the computation over patches Pi, apply the chosen algorithm to compute the fields Vi associated to each patch, and then assemble the ambient field V from these. Simply merging the fields from the patches, even when that makes sense, gives a wrong answer. We develop both very general merging procedures and leaner versions designed for specific, easy-to-arrange covering patterns.


Author(s):  
Vitor Cardoso ◽  
Caio F. B. Macedo ◽  
Kei-ichi Maeda ◽  
Hirotada Okawa

Abstract Black holes are thought to describe the geometry of massive, dark compact objects in the universe. To further support and quantify this long-held belief requires knowledge of possible, if exotic alternatives. Here, we wish to understand how compact can self-gravitating solutions be. We discuss theories with a well-posed initial value problem, consisting in either a single self-interacting scalar, vector or both. We focus on spherically symmetric solutions, investigating the influence of self-interacting potentials into the compactness of the solutions, in particular those that allow for flat-spacetime solutions. We are able to connect such stars to hairy black hole solutions, which emerge as a zero-mass black hole. We show that such stars can have light rings, but their compactness is never parametrically close to that of black holes. The challenge of finding black hole mimickers to investigate full numerical-relativity binary setups remains open.


Author(s):  
Meryem Kafnemer ◽  
Benmiloud Mebkhout ◽  
Frédéric Jean ◽  
Yacine Chitour

<p>In this paper, we study the L<sup>p</sup>-asymptotic stability of the one dimensional linear damped<br />wave equation with Dirichlet boundary conditions in <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math>, with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8712;</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>&#8734;</mo><mo>)</mo></math>. The damping<br />term is assumed to be linear and localized&nbsp; to an arbitrary open sub-interval of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math>. We prove that the&nbsp;<br />semi-group <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>p</mi></msub><mo>(</mo><mi>t</mi><msub><mo>)</mo><mrow><mi>t</mi><mo>&#8805;</mo><mn>0</mn></mrow></msub></math> associated with the previous equation is well-posed and exponentially stable.<br />The proof relies on the multiplier method and depends on whether <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>&#8805;</mo><mn>2</mn></math>&nbsp;or <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>&#60;</mo><mi>p</mi><mo>&#60;</mo><mn>2</mn></math>.</p>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Danh Hua Quoc Nam

AbstractThe main objective of the paper is to study the final model for the Kirchhoff-type parabolic system. Such type problems have many applications in physical and biological phenomena. Under some smoothness of the final Cauchy data, we prove that the problem has a unique mild solution. The main tool is Banach’s fixed point theorem. We also consider the non-well-posed problem in the Hadamard sense. Finally, we apply truncation method to regularize our problem. The paper is motivated by the work of Tuan, Nam, and Nhat [Comput. Math. Appl. 77(1):15–33, 2019].


Sign in / Sign up

Export Citation Format

Share Document