scholarly journals Self-sustaining processes at all scales in wall-bounded turbulent shear flows

Author(s):  
Carlo Cossu ◽  
Yongyun Hwang

We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.

1997 ◽  
Author(s):  
J. Bonnet ◽  
J. Delville ◽  
M. Glauser ◽  
J. Bonnet ◽  
J. Delville ◽  
...  

For over a quarter of a century it has been recognized that turbulent shear flows are dominated by large-scale structures. Yet the majority of models for turbulent mixing fail to include the properties of the structures either explicitly or implicitly. The results obtained using these models may appear to be satisfactory, when compared with experimental observations, but in general these models require the inclusion of empirical constants, which render the predictions only as good as the empirical database used in the determination of such constants. Existing models of turbulence also fail to provide, apart from its stochastic properties, a description of the time-dependent properties of a turbulent shear flow and its development. In this paper we introduce a model for the large-scale structures in a turbulent shear layer. Although, with certain reservations, the model is applicable to most turbulent shear flows, we restrict ourselves here to the consideration of turbulent mixing in a two-stream compressible shear layer. Two models are developed for this case that describe the influence of the large-scale motions on the turbulent mixing process. The first model simulates the average behaviour by calculating the development of the part of the turbulence spectrum related to the large-scale structures in the flow. The second model simulates the passage of a single train of large-scale structures, thereby modelling a significant part of the time-dependent features of the turbulent flow. In both these treatments the large-scale structures are described by a superposition of instability waves. The local properties of these waves are determined from linear, inviscid, stability analysis. The streamwise development of the mean flow, which includes the amplitude distribution of these instability waves, is determined from an energy integral analysis. The models contain no empirical constants. Predictions are made for the effects of freestream velocity and density ratio as well as freestream Mach number on the growth of the mixing layer. The predictions agree very well with experimental observations. Calculations are also made for the time-dependent motion of the turbulent shear layer in the form of streaklines that agree qualitatively with observation. For some other turbulent shear flows the dominant structure of the large eddies can be obtained similarly using linear stability analysis and a partial justification for this procedure is given in the Appendix. In wall-bounded flows a preliminary analysis indicates that a linear, viscous, stability analysis must be extended to second order to derive the most unstable waves and their subsequent development. The extension of the present model to such cases and the inclusion of the effects of chemical reactions in the models are also discussed.


2010 ◽  
Vol 661 ◽  
pp. 178-205 ◽  
Author(s):  
PHILIP HALL ◽  
SPENCER SHERWIN

The relationship between asymptotic descriptions of vortex–wave interactions and more recent work on ‘exact coherent structures’ is investigated. In recent years immense interest has been focused on so-called self-sustained processes in turbulent shear flows where the importance of waves interacting with streamwise vortex flows has been elucidated in a number of papers. In this paper, it is shown that the so-called ‘lower branch’ state which has been shown to play a crucial role in these self-sustained processes is a finite Reynolds number analogue of a Rayleigh vortex–wave interaction with scales appropriately modified from those for external flows to Couette flow, the flow of interest here. Remarkable agreement between the asymptotic theory and numerical solutions of the Navier–Stokes equations is found even down to relatively small Reynolds numbers, thereby suggesting the possible importance of vortex–wave interaction theory in turbulent shear flows. The relevance of the work to more general shear flows is also discussed.


1957 ◽  
Vol 3 (1) ◽  
pp. 67-80 ◽  
Author(s):  
G. K. Batchelor

This paper is concerned with some statistical properties of the displacement of a marked fluid particle released from a given position in a turbulent shear flow, and in particular with the dispersion about the mean position after a long time. It is known that the dispersion takes a simple asymptotic form when the particle velocity is a stationary random function of time, and that analogous results are obtainable when the particle velocity can be transformed to a stationary random function by suitable stretching of the velocity and time scales. The basic hypothesis of the paper is that, in steady free turbulent shear flows which are generated at a point and have a similar structure at different stations downstream, the velocity of a fluid particle exhibits a corresponding Lagrangian similarity and can be so transformed to a stationary random function.The velocity and time scales characterizing the motion of a fluid particle at time t after release at the origin are determined in terms of the powers with which the Eulerian length and velocity scales of the turbulence vary with distance x from the origin. The time scale has the same dependence on t for all jets, wakes and mixing layers (and also for decaying homogeneous turbulence) possessing the usual kind of Eulerian similarity. The dispersion of a particle in the longitudinal or mean-flow direction (and likewise that in the lateral direction in cases of two-dimensional mean flow) is found to vary with t in such a way as to be proportional to the thickness of the shear layer at the mean position of the particle. The way in which the maximum value of the mean concentration of marked fluid falls off with t (for release of a single particle) or with x (for continuous release) is also found.


2011 ◽  
Vol 667 ◽  
pp. 1-37 ◽  
Author(s):  
JIARONG HONG ◽  
JOSEPH KATZ ◽  
MICHAEL P. SCHULTZ

Utilizing an optically index-matched facility and high-resolution particle image velocimetry measurements, this paper examines flow structure and turbulence in a rough-wall channel flow for Reτ in the 3520–5360 range. The scales of pyramidal roughness elements satisfy the ‘well-characterized’ flow conditions, with h/k ≈ 50 and k+ = 60 ~ 100, where h is half height of the channel and k is the roughness height. The near-wall turbulence measurements are sensitive to spatial resolution, and vary with Reynolds number. Spatial variations in the mean flow, Reynolds stresses, as well as the turbulent kinetic energy (TKE) production and dissipation rates are confined to y < 2k. All the Reynolds stress components have local maxima at slightly higher elevations, but the streamwise-normal component increases rapidly at y < k, peaking at the top of the pyramids. The TKE production and dissipation rates along with turbulence transport also peak near the wall. The spatial energy and shear spectra show an increasing contribution of large-scale motions and a diminishing role of small motions with increasing distance from the wall. As the spectra steepen at low wavenumbers, they flatten and develop bumps in wavenumbers corresponding to k − 3k, which fall in the dissipation range. Instantaneous realizations show that roughness-scale eddies are generated near the wall, and lifted up rapidly by large-scale structures that populate the outer layer. A linear stochastic estimation-based analysis shows that the latter share common features with hairpin packets. This process floods the outer layer with roughness-scale eddies, in addition to those generated by the energy-cascading process. Consequently, although the imprints of roughness diminish in the outer-layer Reynolds stresses, consistent with the wall similarity hypothesis, the small-scale turbulence contains a clear roughness signature across the entire channel.


Sign in / Sign up

Export Citation Format

Share Document