vortical structures
Recently Published Documents


TOTAL DOCUMENTS

653
(FIVE YEARS 27)

H-INDEX

42
(FIVE YEARS 0)

2021 ◽  
Vol 9 (12) ◽  
pp. 1406
Author(s):  
Han Li ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Xinguo Dong ◽  
Fuzheng Li

Reducing the noise of the underwater propulsor is gaining more and more attention in the marine industry. The pump-jet propulsor (PJP) is an extraordinary innovation in marine propulsion applications. This paper inspects the effects of blade number on a pre-swirl stator pump-jet propulsor (PJP) quantitatively and qualitatively. The numerical calculations are conducted by IDDES and ELES, where the ELES is only adopted to capture the vortical structures after refining the mesh. The numerical results show good agreement with the experiment. Detailed discussions of the propulsion, the features of thrust fluctuation in time and frequency domains, and the flow field are involved. Based on the ELES results, the vortices in the PJP flow field and the interactions between the vortices of the stator, rotor, and duct are presented. Results suggest that, though changing the blade number under a constant solidity does not affect the propulsion, it has considerable effects on the thrust fluctuation of PJP. The wakes of the stator and rotor are also notably changed. Increasing the stator blade numbers has significantly weakened the high-intensity vortices in the stator wake and, hence, the interaction with the rotor wake vortices. The hub vortices highly depend upon the wake vortices of the rotor. The hub vortices are considerably broken by upstream wake vortices when the load per rotor blade is high. In summary, the blade number is also vital for the further PJP design, particularly when the main concerns are exciting force and noise performance.



2021 ◽  
Vol 2119 (1) ◽  
pp. 012031
Author(s):  
M Yu Hrebtov ◽  
E V Palkin ◽  
D A Slastnaya ◽  
R I Mullyadzhanov ◽  
S V Alekseenko

Abstract We perform Large-eddy simulations of a non-premixed swirling flame in a model of a combustion chamber with a swirling air bulk flow at Re = 15000 and a central pilot low-velocity jet with methane using the Flamelet-generated manifold model. The unsteady behaviour of this regime is well reproduced based on the flame dynamics. The distribution of turbulent kinetic energy suggests the presence of intensive vortical structures typical of high-swirl flows similar to the precessing vortex core.



2021 ◽  
Vol 33 (12) ◽  
pp. 125124
Author(s):  
Binbin Pei ◽  
FangBo Li ◽  
Kunpeng Zhao ◽  
Liang Zhao ◽  
Bofeng Bai


2021 ◽  
Vol 929 ◽  
Author(s):  
Methma M. Rajamuni ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Vortex-induced vibration (VIV) of an elastically mounted sphere placed close to or piercing a free surface (FS) was investigated numerically. The submergence depth ( $h$ ) was systematically varied between $1$ and $-$ 0.75 sphere diameters ( $D$ ) and the response simulated over the reduced velocity range $U^*\in [3.5,14]$ . The incompressible flow was coupled with the sphere motion modelled by a spring–mass–damper system, treating the free-surface boundary as a slip wall. In line with the previous experimental findings, as the submergence depth was decreased from $h^* = h/D =1$ , the maximum response amplitude of the fully submerged sphere decreased; however, as the sphere pierced the FS, the amplitude increased until $h^* = -0.375$ , and then decreased beyond that point. The fluctuating components of the lift and drag coefficients also followed the same pattern. The variation of the near-wake vortex dynamics over this submergence range was examined in detail to understand the effects of $h^*$ on the VIV response. It was found that $h^* = 1$ is a critical submergence depth, beyond which, as $h^*$ is decreased, the vortical structures in the wake vary significantly. For a fully submerged sphere, the influence of the stress-free condition on the VIV response was dominant over the kinematic constraint preventing flow through the surface. For piercing sphere cases, two previously unseen vortical recirculations were formed behind the sphere near times of maximal displacement, enhancing the VIV response. These were strongest at $h^* = -0.375$ , and much weaker for small submergence depths, explaining the observed response-amplitude variation.



Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 389
Author(s):  
Evgenii L. Sharaborin ◽  
Oleg A. Rogozin ◽  
Aslan R. Kasimov

We perform high-resolution numerical simulations of three-dimensional dynamics of an elongated bubble in a microchannel at moderate Reynolds numbers up to 1800. For this purpose, we use the coupled Brinkman penalization and volume of fluid methods implemented in the open-source framework Basilisk. The new results are validated with available experimental data and compared with previous numerical and theoretical predictions. We extend existing results to regimes with significant inertia, which are characterized by intense deformations of the bubble, including cases with azimuthal symmetry breaking. Various dynamical features are analyzed in terms of their spatiotemporal characteristics, such as frequencies and wavelengths of the bubble surface undulations and vortical structures in the flow.



2021 ◽  
Author(s):  
Reza M. Ziazi ◽  
James A. Liburdy

Abstract Transition to turbulence in randomly arranged porous media is observed in nature and industrial applications. The flow characteristics of these flows during transition are not well identified. This work describes the parameters influencing on overall mixing during the transition process from the perspective of scale of vortical structures and dispersion characteristics by addressing the following questions: (a) what are the dominant mechanisms evolution of scale of vortices, and (b) how does the inertial effects of vortical structures enhance the flow transport properties through tortuosity and dispersion. Time-resolved PIV is used to investigate the flow in the macro-scale Reynolds numbers from 100 to 1000 to show the pore- versus macro-scale effects on the scale of the flow dispersion, and their contribution in interpreting the overall flow mixing. Lagrangian mixing characteristics based on Eulerian local pore velocity variances is used to demonstrate the bed characteristics for flow in randomly distributed porous media flows. The dispersion asymptotically approaches 0.085 % of VintDH longitudinally which shows the turbulent transport is increased by enhancing the Reynolds number that matches very well with the literature.



2021 ◽  
Author(s):  
Oscar Alvarez ◽  
Yifei Yu ◽  
Chaoqun Liu

Abstract Liutex is a vortex identification method that provides a vector interpretation of local fluid rotation. Liutex produces a vector quantity which can be used to determine the absolute and relative strength of a vortex, the local rotation axis of a vortex, the vortex core center, the size of the vortex core, and the vortex boundary. Vortex identification and visualization is essential in computational fluid turbulence analysis and fluid mechanics in general. Until Liutex, there has not been a way to identify the core of a vortex structure or even the center of rotation of a vortex structure. Since Liutex, tools have been created to assist in the identification and analysis of vortical structures. The Liutex Core Line has been developed to better understand turbulent fluid structures. A Liutex core is defined as a concentration of Liutex vectors and defined to be unique and the Liutex core line is the center of rotation of that Liutex core. Currently, iso-surfaces are the most popular way to visualize the structure of turbulent flow but there is no reason to believe that it is the best way to represent a vortex’s structure. Previous methods that use iso-surface are strongly threshold dependent and since the Liutex core line is unique, it is independent of threshold and can show the real vortex structure. In this paper we show the benefits and promises of the Liutex Core Line as a better way of representing vortex structures.



2021 ◽  
Vol 263 (2) ◽  
pp. 4459-4470
Author(s):  
Shivam Sundeep ◽  
Xin Zhang ◽  
Siyang Zhong ◽  
Huanxian Bu

Aeroacoustic and aerodynamic characteristics of the turbulent boundary layer encountering a large obstacle are experimentally investigated in this paper. Two-dimensional obstacles with a square and a semi-circular cross-section mounted on a flat plate are studied in wind tunnel tests, with particular interests in the shear layer characteristics, wall pressure fluctuations, and far-field noise induced by the obstacles. Synchronized measurements of the far-field noise and the wall pressure fluctuations were conducted using microphone arrays in the far-field and flush-mounted in the plate, respectively. Additionally, the streamwise and wall-normal velocity fluctuations behind the obstacle were measured using the X-wire probe. The measured velocity profiles, spectra, and wall pressure spectra are compared, showing that the rectangular obstacle has a significant impact on both the turbulent flow and far-field noise. The large-scale vortical structures shed from the obstacles can be identified in the wall pressure spectra, the streamwise velocity spectra, and the wall pressure coherence analysis. Within the shear layer, the pairing of vortices occurs and the frequency of the broadband peak in the velocity spectra decreases as the shear layer grows downstream. Further eddy convective velocities of large-scale vortical structures inside the shear layer were analyzed based on the wall pressure fluctuations.





Sign in / Sign up

Export Citation Format

Share Document