external flows
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 45)

H-INDEX

20
(FIVE YEARS 4)

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Iosif Moulinos ◽  
Christos Manopoulos ◽  
Sokrates Tsangaris

The internal steady and unsteady flows with a frequency and amplitude are examined through a backward facing step (expansion ratio 2), for low Reynolds numbers (Re=400, Re=800), using the immersed boundary method. A lower part of the backward facing step is oscillating with the same frequency as the unsteady flow. The effect of the frequency, the amplitude, and the length of this oscillation is investigated. By suitable active control regulation, the recirculation lengths are reduced, and, for a percentage of the time period, no upper wall, negative velocity, region occurs. Moreover, substituting the prescriptively moving surface by a pressure responsive homogeneous membrane, the fluid–structure interaction is examined. We show that, by selecting proper values for the membrane parameters, such as membrane tension and applied external pressure, the upper wall flow separation bubble vanishes, while the lower one diminishes significantly in both the steady and the unsteady cases. Furthermore, for the time varying case, the length fluctuation of the lower wall reversed flow region is fairly contracted. The findings of the study have applications at the control of confined and external flows where separation occurs.


2021 ◽  
pp. 223-237
Author(s):  
Salla Jokela ◽  
Paola Minoia

This chapter discusses a form of platform urbanism that has emerged with peer-to-peer digital tourist platforms like Airbnb and resulted in the touristification of regions. Even though sustainable development promotes ecotourism as a way of integrating local livelihoods into transnational commerce and cultural exchange, this chapter illustrates how the movement of external flows of people, capital, consumption—and narrations—into local areas rapidly transforms urban space and culture.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 377
Author(s):  
Yash Mehta ◽  
Ari Nejadmalayeri ◽  
Jonathan David Regele

Advancements to the adaptive wavelet-collocation method over the last decade have opened up a number of new possible areas for active research. Volume penalization techniques allow complex immersed boundary conditions to be used with high efficiency for both internal and external flows. Anisotropic methods make it possible to use body-fitted meshes while still taking advantage of the dynamic adaptability properties wavelet-based methods provide. The parallelization of the approach has made it possible to perform large high-resolution simulations of detonation initiation and fluid instabilities to uncover new physical insights that would otherwise be difficult to discover. Other developments include space-time adaptive methods and nonreflecting boundary conditions. This article summarizes the work performed using the adaptive wavelet-collocation method developed by Vasilyev and coworkers over the past decade.


Aviation ◽  
2021 ◽  
Vol 25 (3) ◽  
pp. 149-158
Author(s):  
Nihad E. Daidzic

Vertical flight performance of Lighter-than-Air free hot-air balloons is derived and discussed. Novel mathematical model using lumped-parameters has been used to model balloon flight dynamics and steady-state performance in particular. Thermal model was not treated as the super-heat is under the control of aeronauts/pilots. Buoyancy or gross lift, net or effective lift, specific lift, and excess specific lift were derived for a general single envelope balloon and can be applied to hot-air, gas and hybrid balloons. Rate-of-climb, absolute ceiling, rate-of-descent, and the maximum rate-of-descent or the uncontrolled terminal descent have all been modeled and sample computations performed for AX8 or AX9 FAI-class hot-air balloons. Lifting index or the specific net/effective lift have been computed treating ambient and hot air as ideal gases at various pressure altitudes and representative envelope temperatures. Drag coefficient in upward and downward vertical flights have been chosen based on best available data. Experimental scale and full-scale flight tests are suggested for more accurate estimates of external aerodynamics in vertical balloon flights. CFD computations of coupled inner- and external-flows are also recommended in future efforts. Knowledge of free balloon’s vertical performance is essential in flight planning and operational safety of flight.


2021 ◽  
Vol 17 (4) ◽  
pp. e1008826
Author(s):  
Steffen Lange ◽  
Benjamin M. Friedrich

Sperm of marine invertebrates have to find eggs cells in the ocean. Turbulent flows mix sperm and egg cells up to the millimeter scale; below this, active swimming and chemotaxis become important. Previous work addressed either turbulent mixing or chemotaxis in still water. Here, we present a general theory of sperm chemotaxis inside the smallest eddies of turbulent flow, where signaling molecules released by egg cells are spread into thin concentration filaments. Sperm cells ‘surf’ along these filaments towards the egg. External flows make filaments longer, but also thinner. These opposing effects set an optimal flow strength. The optimum predicted by our theory matches flow measurements in shallow coastal waters. Our theory quantitatively agrees with two previous fertilization experiments in Taylor-Couette chambers and provides a mechanistic understanding of these early experiments. ‘Surfing along concentration filaments’ could be a paradigm for navigation in complex environments in the presence of turbulent flow.


2021 ◽  
pp. 2150248
Author(s):  
Jin-Long Duan ◽  
Xu Wang ◽  
Ke Chen

The dynamics of a full-scale pipe conveying fluid inside is investigated based on the finite element method (FEM). During the numerical simulation, the Euler–Bernoulli beam equations are used to model the motion of the full-scale pipe while the effect of internal flow is considered. And the semi-empirical time-domain model is applied to simulate the external hydrodynamic forces exerted on the pipe. Then the typical vortex-induced vibration (VIV) characteristics of the full-scale pipe considering both internal and external flows are analyzed. The results show that with the increase of the internal flow velocity, the natural frequencies of the full-scale pipe decrease and the in-line (IL) and cross-flow (CF) dominating modes are increased. Furthermore, the dominating frequencies in both IL and CF directions are not notably changed. And the IL and CF root-mean-square (RMS) values of amplitudes fluctuate at around the stable values due to the stable external hydrodynamic forces. It should be noticed that the IL and CF RMS strain values of the full-scale pipe are increased, especially for high external and internal flow velocities. The maximal RMS strain values in both IL and CF directions appear next to the pipe top, which could have an influence on the motion of the ship on the sea surface.


Sign in / Sign up

Export Citation Format

Share Document