scholarly journals Improving Precision and Power in Randomized Trials for COVID-19 Treatments Using Covariate Adjustment, for Binary, Ordinal, and Time-to-Event Outcomes

Author(s):  
David Benkeser ◽  
Iván Díaz ◽  
Alex Luedtke ◽  
Jodi Segal ◽  
Daniel Scharfstein ◽  
...  

SummaryTime is of the essence in evaluating potential drugs and biologics for the treatment and prevention of COVID-19. There are currently over 400 clinical trials (phase 2 and 3) of treatments for COVID-19 registered on clinicaltrials.gov. Covariate adjustment is a statistical analysis method with potential to improve precision and reduce the required sample size for a substantial number of these trials. Though covariate adjustment is recommended by the U.S. Food and Drug Administration and the European Medicines Agency, it is underutilized, especially for the types of outcomes (binary, ordinal and time-to-event) that are common in COVID-19 trials. To demonstrate the potential value added by covariate adjustment in this context, we simulated two-arm, randomized trials comparing a hypothetical COVID-19 treatment versus standard of care, where the primary outcome is binary, ordinal, or time-to-event. Our simulated distributions are derived from two sources: longitudinal data on over 500 patients hospitalized at Weill Cornell Medicine New York Presbyterian Hospital, and a Centers for Disease Control and Prevention (CDC) preliminary description of 2449 cases. We found substantial precision gains from using covariate adjustment-equivalent to 9-21% reductions in the required sample size to achieve a desired power-for a variety of estimands (targets of inference) when the trial sample size was at least 200. We provide an R package and practical recommendations for implementing covariate adjustment. The estimators that we consider are robust to model misspecification.

Biometrics ◽  
2020 ◽  
Author(s):  
David Benkeser ◽  
Iván Díaz ◽  
Alex Luedtke ◽  
Jodi Segal ◽  
Daniel Scharfstein ◽  
...  

2012 ◽  
Vol 32 (5) ◽  
pp. 739-751 ◽  
Author(s):  
Antje Jahn-Eimermacher ◽  
Katharina Ingel ◽  
Astrid Schneider

2022 ◽  
Author(s):  
Mia S. Tackney ◽  
Tim Morris ◽  
Ian White ◽  
Clemence Leyrat ◽  
Karla Diaz-Ordaz ◽  
...  

Abstract Adjustment for baseline covariates in randomized trials has been shown to lead to gains in power and can protect against chance imbalances in covariates. For continuous covariates, there is a risk that the the form of the relationship between the covariate and outcome is misspecified when taking an adjusted approach. Using a simulation study focusing on small to medium-sized individually randomized trials, we explore whether a range of adjustment methods are robust to misspecification, either in the covariate-outcome relationship or through an omitted covariate-treatment interaction. Specifically, we aim to identify potential settings where G-computation, Inverse Probability of Treatment Weighting ( IPTW ), Augmented Inverse Probability of Treatment Weighting ( AIPTW ) and Targeted Maximum Likelihood Estimation ( TMLE ) offer improvement over the commonly used Analysis of Covariance ( ANCOVA ). Our simulations show that all adjustment methods are generally robust to model misspecification if adjusting for a few covariates, sample size is 100 or larger, and there are no covariate-treatment interactions. When there is a non-linear interaction of treatment with a skewed covariate and sample size is small, all adjustment methods can suffer from bias; however, methods that allow for interactions (such as G-computation with interaction and IPTW ) show improved results compared to ANCOVA . When there are a high number of covariates to adjust for, ANCOVA retains good properties while other methods suffer from under- or over-coverage. An outstanding issue for G-computation, IPTW and AIPTW in small samples is that standard errors are underestimated; development of small sample corrections is needed.


2010 ◽  
Vol 8 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Zhiying You ◽  
O Dale Williams ◽  
Inmaculada Aban ◽  
Edmond Kato Kabagambe ◽  
Hemant K Tiwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document