scholarly journals From Diversity to Complexity: Microbial Networks in Soils

2021 ◽  
Author(s):  
Ksenia Guseva ◽  
Sean Darcy ◽  
Eva Simon ◽  
Lauren V. Alteio ◽  
Alicia Montesinos-Navarro ◽  
...  

Network analysis has been used for many years in ecological research to analyze organismal associations, for example in food webs, plant-plant or plant-animal interactions. Although network analysis is widely applied in microbial ecology, only recently has it entered the realms of soil microbial ecology, shown by a rapid rise in studies applying co-occurrence analysis to soil microbial communities. While this application offers great potential for deeper insights into the ecological structure of soil microbial ecosystems, it also brings new challenges related to the specific characteristics of soil datasets and the type of ecological questions that can be addressed. In this Perspectives Paper we assess the challenges of applying network analysis to soil microbial ecology due to the small-scale heterogeneity of the soil environment and the nature of soil microbial datasets. We review the different approaches of network construction that are commonly applied to soil microbial datasets and discuss their features and limitations. Using a test dataset of microbial communities from two depths of a forest soil, we demonstrate how different experimental designs and network constructing algorithms affect the structure of the resulting networks, and how this in turn may influence ecological conclusions. We will also reveal how assumptions of the construction method, methods of preparing the dataset, an definitions of thresholds affect the network structure. Finally, we discuss the particular questions in soil microbial ecology that can be approached by analyzing and interpreting specific network properties. Targeting these network properties in a meaningful way will allow applying this technique not in merely descriptive, but in hypothesis-driven research.

mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Jizhong Zhou ◽  
Ye Deng ◽  
Feng Luo ◽  
Zhili He ◽  
Yunfeng Yang

ABSTRACT Understanding the interactions among different species and their responses to environmental changes, such as elevated atmospheric concentrations of CO2, is a central goal in ecology but is poorly understood in microbial ecology. Here we describe a novel random matrix theory (RMT)-based conceptual framework to discern phylogenetic molecular ecological networks using metagenomic sequencing data of 16S rRNA genes from grassland soil microbial communities, which were sampled from a long-term free-air CO2 enrichment experimental facility at the Cedar Creek Ecosystem Science Reserve in Minnesota. Our experimental results demonstrated that an RMT-based network approach is very useful in delineating phylogenetic molecular ecological networks of microbial communities based on high-throughput metagenomic sequencing data. The structure of the identified networks under ambient and elevated CO2 levels was substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher-order organization, topological roles of individual nodes, and network hubs, suggesting that the network interactions among different phylogenetic groups/populations were markedly changed. Also, the changes in network structure were significantly correlated with soil carbon and nitrogen contents, indicating the potential importance of network interactions in ecosystem functioning. In addition, based on network topology, microbial populations potentially most important to community structure and ecosystem functioning can be discerned. The novel approach described in this study is important not only for research on biodiversity, microbial ecology, and systems microbiology but also for microbial community studies in human health, global change, and environmental management. IMPORTANCE The interactions among different microbial populations in a community play critical roles in determining ecosystem functioning, but very little is known about the network interactions in a microbial community, owing to the lack of appropriate experimental data and computational analytic tools. High-throughput metagenomic technologies can rapidly produce a massive amount of data, but one of the greatest difficulties is deciding how to extract, analyze, synthesize, and transform such a vast amount of information into biological knowledge. This study provides a novel conceptual framework to identify microbial interactions and key populations based on high-throughput metagenomic sequencing data. This study is among the first to document that the network interactions among different phylogenetic populations in soil microbial communities were substantially changed by a global change such as an elevated CO2 level. The framework developed will allow microbiologists to address research questions which could not be approached previously, and hence, it could represent a new direction in microbial ecology research.


2018 ◽  
Author(s):  
Yumin Zhang ◽  
Lu Lu ◽  
Xulu xChang ◽  
Fan Jiang ◽  
Xiangdong Gao ◽  
...  

ABSTRACTWe analysed soil-borne microbial (bacterial, archaeal, and fungal) communities around the Fildes Region of King George Island, maritime Antarctica, which were divided into two groups according to soil elemental compositions and environmental attributes (soil chemical parameters and vegetation conditions) located in Holocene raised beach and Tertiary volcanic stratigraphy. Prokaryotic communities of the two groups were well separated; they predominantly correlated with soil elemental compositions, and were secondly correlated with environmental attributes (e.g., soil pH, total organic carbon, , and vegetation coverage; Pearson test, r = 0.59 vs. 0.52, both P < 0.01). The relatively high abundance of P, S, Cl, and Br in Group 1 was likely due to landform uplift. Lithophile-elements (Si, Al, Ca, Sr, Ti, V, and Fe) correlated with prokaryotic communities in Group 2 may originate from weathering of Tertiary volcanic rock. The elements and nutrients accumulated during formation of different landforms influenced the development of soils, plant growth, and microbial communities, and resulted in small-scale spatially heterogeneous biological distributions. We propose that the geological evolution of the Fildes Region was crucial to its microbial community development.IMPORTANCEThis current study analyzed soil-borne microbial communities around the Fildes Region of King George Island, maritime Antarctica, which were divided into two groups according to soil elemental compositions and environmental attributes. We provide new evidence for the crucial influence of landforms on small-scale structures and spatial heterogeneity of soil microbial communities.


2011 ◽  
Vol 6 (2) ◽  
pp. 343-351 ◽  
Author(s):  
Albert Barberán ◽  
Scott T Bates ◽  
Emilio O Casamayor ◽  
Noah Fierer

2014 ◽  
Vol 8 (4) ◽  
pp. 952-952 ◽  
Author(s):  
Albert Barberán ◽  
Scott T Bates ◽  
Emilio O Casamayor ◽  
Noah Fierer

Author(s):  
Miranda M. Hart ◽  
Adam T. Cross ◽  
Haylee M. D'Agui ◽  
Kingsley W. Dixon ◽  
Mieke Van der Heyde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document