Cylindrical paraxial optical beams described by the incomplete gamma function

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Tomasz Radożycki
2019 ◽  
Vol 10 (1) ◽  
pp. 30-51
Author(s):  
Mongkolsery Lin ◽  
◽  
Brian Fisher ◽  
Somsak Orankitjaroen ◽  
◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Abdelhalim Ebaid ◽  
Hibah S. Alhawiti

The boundary layer flow of nanofluids is usually described by a system of nonlinear differential equations with infinity boundary conditions. These boundary conditions at infinity are transformed into classical boundary conditions via two different transformations. Accordingly, the original heat transfer equation is changed into a new one which is expressed in terms of the new variable. The exact solutions have been obtained in terms of the exponential function for the stream function and in terms of the incomplete Gamma function for the temperature distribution. Furthermore, it is found in this project that a certain transformation reduces the computational work required to obtain the exact solution of the heat transfer equation. Hence, such transformation is recommended for future analysis of similar physical problems. Besides, the other published exact solution was expressed in terms of the WhittakerM function which is more complicated than the generalized incomplete Gamma function of the current analysis. It is important to refer to the fact that the analytical procedure followed in our project is easier and more direct than the one considered in a previous published work.


Sign in / Sign up

Export Citation Format

Share Document