scholarly journals Quantum walks with quantum chaotic coins: Loschmidt echo, classical limit, and thermalization

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Sivaprasad Omanakuttan ◽  
Arul Lakshminarayan
1989 ◽  
Vol 50 (10) ◽  
pp. 1195-1208 ◽  
Author(s):  
A. Spielfiedel ◽  
E. Roueff ◽  
N. Feautrier

1988 ◽  
Vol 49 (11) ◽  
pp. 1911-1923 ◽  
Author(s):  
N. Feautrier ◽  
E. Roueff ◽  
A. Spielfiedel

2015 ◽  
Vol 22 (04) ◽  
pp. 1550021 ◽  
Author(s):  
Fabio Benatti ◽  
Laure Gouba

When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Sho Kubota ◽  
Etsuo Segawa ◽  
Tetsuji Taniguchi

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Shuji Kuriki ◽  
Md Sams Afif Nirjhor ◽  
Hiromichi Ohno
Keyword(s):  

2021 ◽  
Vol 183 (1) ◽  
Author(s):  
R. Alonso ◽  
V. Bagland ◽  
L. Desvillettes ◽  
B. Lods

AbstractIn this paper, we present new estimates for the entropy dissipation of the Landau–Fermi–Dirac equation (with hard or moderately soft potentials) in terms of a weighted relative Fisher information adapted to this equation. Such estimates are used for studying the large time behaviour of the equation, as well as for providing new a priori estimates (in the soft potential case). An important feature of such estimates is that they are uniform with respect to the quantum parameter. Consequently, the same estimations are recovered for the classical limit, that is the Landau equation.


Sign in / Sign up

Export Citation Format

Share Document