scholarly journals Tunable Lattice Reconstruction, Triangular Network of Chiral One-Dimensional States, and Bandwidth of Flat Bands in Magic Angle Twisted Bilayer Graphene

2020 ◽  
Vol 125 (23) ◽  
Author(s):  
Yi-Wen Liu ◽  
Ying Su ◽  
Xiao-Feng Zhou ◽  
Long-Jing Yin ◽  
Chao Yan ◽  
...  
2021 ◽  
Vol 118 (30) ◽  
pp. e2100006118
Author(s):  
Xiaobo Lu ◽  
Biao Lian ◽  
Gaurav Chaudhary ◽  
Benjamin A. Piot ◽  
Giulio Romagnoli ◽  
...  

Moiré superlattices in two-dimensional van der Waals heterostructures provide an efficient way to engineer electron band properties. The recent discovery of exotic quantum phases and their interplay in twisted bilayer graphene (tBLG) has made this moiré system one of the most renowned condensed matter platforms. So far studies of tBLG have been mostly focused on the lowest two flat moiré bands at the first magic angle θm1 ∼ 1.1°, leaving high-order moiré bands and magic angles largely unexplored. Here we report an observation of multiple well-isolated flat moiré bands in tBLG close to the second magic angle θm2 ∼ 0.5°, which cannot be explained without considering electron–election interactions. With high magnetic field magnetotransport measurements we further reveal an energetically unbound Hofstadter butterfly spectrum in which continuously extended quantized Landau level gaps cross all trivial band gaps. The connected Hofstadter butterfly strongly evidences the topologically nontrivial textures of the multiple moiré bands. Overall, our work provides a perspective for understanding the quantum phases in tBLG and the fractal Hofstadter spectra of multiple topological bands.


2019 ◽  
Vol 99 (19) ◽  
Author(s):  
Procolo Lucignano ◽  
Dario Alfè ◽  
Vittorio Cataudella ◽  
Domenico Ninno ◽  
Giovanni Cantele

2021 ◽  
Vol 20 (4) ◽  
pp. 488-494 ◽  
Author(s):  
Shuang Wu ◽  
Zhenyuan Zhang ◽  
K. Watanabe ◽  
T. Taniguchi ◽  
Eva Y. Andrei

Author(s):  
Folkert K. de Vries ◽  
Elías Portolés ◽  
Giulia Zheng ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

2010 ◽  
Vol 82 (12) ◽  
Author(s):  
E. Suárez Morell ◽  
J. D. Correa ◽  
P. Vargas ◽  
M. Pacheco ◽  
Z. Barticevic

2D Materials ◽  
2022 ◽  
Author(s):  
Tiago Campolina Barbosa ◽  
Andreij C. Gadelha ◽  
Douglas A. A. Ohlberg ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

Abstract In this work, we study the Raman spectra of twisted bilayer graphene samples as a function of their twist-angles (θ), ranging from 0.03º to 3.40º, where local θ are determined by analysis of their associated moiré superlattices, as imaged by scanning microwave impedance microscopy. Three standard excitation laser lines are used (457, 532, and 633 nm wavelengths), and the main Raman active graphene bands (G and 2D) are considered. Our results reveal that electron-phonon interaction influences the G band's linewidth close to the magic angle regardless of laser excitation wavelength. Also, the 2D band lineshape in the θ < 1º regime is dictated by crystal lattice and depends on both the Bernal (AB and BA) stacking bilayer graphene and strain soliton regions (SP) [1]. We propose a geometrical model to explain the 2D lineshape variations, and from it, we estimate the SP width when moving towards the magic angle.


Nature ◽  
2019 ◽  
Vol 573 (7772) ◽  
pp. 91-95 ◽  
Author(s):  
Yuhang Jiang ◽  
Xinyuan Lai ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
Kristjan Haule ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document