Path-integral solutions of wave equations with dissipation

1989 ◽  
Vol 62 (19) ◽  
pp. 2201-2204 ◽  
Author(s):  
Cecile DeWitt-Morette ◽  
See Kit Foong
2018 ◽  
Vol 73 (10) ◽  
pp. 883-892
Author(s):  
Stefan C. Mancas ◽  
Haret C. Rosu ◽  
Maximino Pérez-Maldonado

AbstractWe use a simple method that leads to the integrals involved in obtaining the travelling-wave solutions of wave equations with one and two exponential nonlinearities. When the constant term in the integrand is zero, implicit solutions in terms of hypergeometric functions are obtained, while when that term is nonzero, all the basic travelling-wave solutions of Liouville, Tzitzéica, and their variants, as as well sine/sinh-Gordon equations with important applications in the phenomenology of nonlinear physics and dynamical systems are found through a detailed study of the corresponding elliptic equations.


1969 ◽  
Vol 21 (1) ◽  
pp. 138-161 ◽  
Author(s):  
L. J. F. Broer ◽  
L. A. Peletier

Sign in / Sign up

Export Citation Format

Share Document