travelling wave solutions
Recently Published Documents


TOTAL DOCUMENTS

921
(FIVE YEARS 109)

H-INDEX

50
(FIVE YEARS 5)

Author(s):  
Xinjian Wang ◽  
Guo Lin ◽  
Shigui Ruan

Vector-borne diseases, such as chikungunya, dengue, malaria, West Nile virus, yellow fever and Zika, pose a major global public health problem worldwide. In this paper we investigate the propagation dynamics of diffusive vector-borne disease models in the whole space, which characterize the spatial expansion of the infected hosts and infected vectors. Due to the lack of monotonicity, the comparison principle cannot be applied directly to this system. We determine the spreading speed and minimal wave speed when the basic reproduction number of the corresponding kinetic system is larger than one. The spreading speed is mainly estimated by the uniform persistence argument and generalized principal eigenvalue. We also show that solutions converge locally uniformly to the positive equilibrium by employing two auxiliary monotone systems. Moreover, it is proven that the spreading speed is the minimal wave speed of travelling wave solutions. In particular, the uniqueness and monotonicity of travelling waves are obtained. When the basic reproduction number of the corresponding kinetic system is not larger than one, it is shown that solutions approach to the disease-free equilibrium uniformly and there is no travelling wave solutions. Finally, numerical simulations are presented to illustrate the analytical results.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012062
Author(s):  
G.N. Shaikhova ◽  
B.K. Rakhimzhanov ◽  
Zh.K. Zhanbosinova

Abstract In this work, the generalized nonlinear Schrödinger equation is investigated. This equation is integrable and admits Lax pair. To obtain travelling wave solutions the extended tanh method is applied. This method is effective to obtain the exact solutions for different types of nonlinear partial differential equations. Graphs of obtained solutions are presented. The derived solutions are found to be important for the explanation of some practical physical problems.


Author(s):  
Asit Saha ◽  
Battal Gazi Karakoç ◽  
Khalid K. Ali

The goal of the present paper is to obtain and analyze new exact travelling wave solutions and bifurcation behavior of modified Zakharov-Kuznetsov (mZK) equation with higher order dispersion term. For this purpose, first and second simple methods are used to build soliton solutions of travelling wave solutions. Furthermore, bifurcation behavior of traveling waves including new type of quasiperiodic and multi-periodic traveling wave motions have been examined depending on the physical parameters. Multistability for the nonlinear mZK equation has been investigated depending on fixed values of physical parameters with various initial conditions. The suggested methods for the analytical solutions are powerful and benefical tools to obtain the exact travelling wave solutions of nonlinear evolution equations (NLEEs). Two and three-dimensional plots are also provided to illustrate the new solutions. Bifurcation and multistability behaviors of traveling wave solution of the nonlinear mZK equation with higher order dispersion will add some value in the literature of mathematical and plasma physics.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1765
Author(s):  
Tingting Wang ◽  
Xuanxuan Han ◽  
Yibin Lu

In this paper, we study the symmetric travelling wave solutions of the b-family of the Novikov equation. We show that the b-family of the Novikov equation can provide symmetric travelling wave solutions, such as peakon, kink and smooth soliton solutions. In particular, the single peakon, two-peakon, stationary kink, anti-kink, two-kink, two-anti-kink, bell-shape soliton and hat-shape soliton solutions are presented in an explicit formula.


Heliyon ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. e07704
Author(s):  
Abdulla - Al Mamun ◽  
Samsun Nahar Ananna ◽  
Tianqing An ◽  
Nur Hasan Mahmud Shahen ◽  
Md. Asaduzzaman ◽  
...  

Author(s):  
Demetrios T. Papageorgiou ◽  
Saleh Tanveer

This article studies a coupled system of model multi-dimensional partial differential equations (PDEs) that arise in the nonlinear dynamics of two-fluid Couette flow when insoluble surfactants are present on the interface. The equations have been derived previously, but a rigorous study of local and global existence of their solutions, or indeed solutions of analogous systems, has not been considered previously. The evolution PDEs are two-dimensional in space and contain novel pseudo-differential terms that emerge from asymptotic analysis and matching in the multi-scale problem at hand. The one-dimensional surfactant-free case was studied previously, where travelling wave solutions were constructed numerically and their stability investigated; in addition, the travelling wave solutions were justified mathematically. The present study is concerned with some rigorous results of the multi-dimensional surfactant system, including local well posedness and smoothing results when there is full coupling between surfactant dynamics and interfacial motion, and global existence results when such coupling is absent. As far as we know such results are new for non-local thin film equations in either one or two dimensions.


Sign in / Sign up

Export Citation Format

Share Document