scholarly journals Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon

2001 ◽  
Vol 86 (13) ◽  
pp. 2894-2896 ◽  
Author(s):  
G. P. Berman ◽  
G. D. Doolen ◽  
P. C. Hammel ◽  
V. I. Tsifrinovich
2000 ◽  
Vol 61 (21) ◽  
pp. 14694-14699 ◽  
Author(s):  
G. P. Berman ◽  
G. D. Doolen ◽  
P. C. Hammel ◽  
V. I. Tsifrinovich

2002 ◽  
Author(s):  
Denis V. Pelekhov ◽  
I. Martin ◽  
A. Suter ◽  
David W. Reagor ◽  
P. C. Hammel

2019 ◽  
Vol 298 ◽  
pp. 85-90
Author(s):  
Sebastian Schnoz ◽  
Alexander Däpp ◽  
Andreas Hunkeler ◽  
Beat H. Meier

2005 ◽  
Vol 337 (3) ◽  
pp. 161-165 ◽  
Author(s):  
G.P. Berman ◽  
F. Borgonovi ◽  
V.I. Tsifrinovich

Nano Letters ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 7935-7940 ◽  
Author(s):  
U. Grob ◽  
M. D. Krass ◽  
M. Héritier ◽  
R. Pachlatko ◽  
J. Rhensius ◽  
...  

1994 ◽  
Vol 332 ◽  
Author(s):  
John A. Sidles ◽  
Joseph L. Garbini

ABSTRACTRecently the first experiments in magnetic resonance force microscopy (MRFM) have been conducted. In these experiments a force microscope cantilever is used to detect the magnetic force exerted by electrons and nuclei in a sample. The magnetization of the sample is modulated at the resonant frequency of the cantilever, using standard magnetic resonance techniques. The resulting excitation of the cantilever is detected optically. This article reviews the present status of MRFM technology, emphasizing the physical principles involved and the opportunities for further research and development. Particular emphasis is placed on single spin detection by MRFM and potential applications in biomolecular imaging.


Sign in / Sign up

Export Citation Format

Share Document