quantum computer
Recently Published Documents


TOTAL DOCUMENTS

1540
(FIVE YEARS 552)

H-INDEX

66
(FIVE YEARS 17)

Author(s):  
Carlos Baladrón ◽  
Andrei Khrennikov

Closed timelike curves (CTCs), non-intuitive theoretical solutions of general relativity field equations can be modelled in quantum mechanics in a way, known as Deutsch-CTCs, to circumvent one of their most paradoxical implications, namely, the so-called grandfather paradox. An outstanding theoretical result of this model is the demonstration that in the presence of a Deutsch-CTC a classical computer would be computationally equivalent to a quantum computer. In the present study, the possible implications of such a striking result for the foundations of quantum mechanics and the connections between classicality and quantumness are explored. To this purpose, a model for fundamental particles that interact in physical space exchanging carriers of momentum and energy is considered. Every particle is then supplemented with an information space in which a probabilistic classical Turing machine is stored. It is analysed whether, through the action of Darwinian evolution, both a classical algorithm coding the rules of quantum mechanics and an anticipation module might plausibly be developed on the information space from initial random behaviour. The simulation of a CTC on the information space of the particle by means of the anticipation module would imply that fundamental particles, which do not possess direct intrinsic quantum features from first principles in this information-theoretic Darwinian approach, could however generate quantum emergent behaviour in real time as a consequence of Darwinian evolution acting on information-theoretic physical systems.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Vinayak Dixit ◽  
Sisi Jian

AbstractDrive cycles in vehicle systems are important determinants for energy consumption, emissions, and safety. Estimating the frequency of the drive cycle quickly is important for control applications related to fuel efficiency, emission reduction and improving safety. Quantum computing has established the computational efficiency that can be gained. A drive cycle frequency estimation algorithm based on the quantum Fourier transform is exponentially faster than the classical Fourier transform. The algorithm is applied on real world data set. We evaluate the method using a quantum computing simulator, demonstrating remarkable consistency with the results from the classical Fourier transform. Current quantum computers are noisy, a simple method is proposed to mitigate the impact of the noise. The method is evaluated on a 15 qubit IBM-q quantum computer. The proposed method for a noisy quantum computer is still faster than the classical Fourier transform.


2022 ◽  
Author(s):  
Fereshte Shahbeigi ◽  
Mahsa Karimi ◽  
Vahid Karimipour

Abstract Two qubit density matrices which are of X-shape, are a natural generalization of Bell Diagonal States (BDSs) recently simulated on the IBM quantum device. We generalize the previous results and propose a quantum circuit for simulation of a general two qubit X-state, implement it on the same quantum device, and study its entanglement for several values of the extended parameter space. We also show that their X-shape is approximately robust against noisy quantum gates. To further physically motivate this study, we invoke the two-spin Heisenberg XYZ system and show that for a wide class of initial states, it leads to dynamical density matrices which are X-states. Due to the symmetries of this Hamiltonian, we show that by only two qubits, one can simulate the dynamics of this system on the IBM quantum computer.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Pei-Hua Wang ◽  
Jen-Hao Chen ◽  
Yufeng Jane Tseng

AbstractPharmaceutical patent analysis is the key to product protection for pharmaceutical companies. In patent claims, a Markush structure is a standard chemical structure drawing with variable substituents. Overlaps between apparently dissimilar Markush structures are nearly unrecognizable when the structures span a broad chemical space. We propose a quantum search-based method which performs an exact comparison between two non-enumerated Markush structures with a constraint satisfaction oracle. The quantum circuit is verified with a quantum simulator and the real effect of noise is estimated using a five-qubit superconductivity-based IBM quantum computer. The possibilities of measuring the correct states can be increased by improving the connectivity of the most computation intensive qubits. Depolarizing error is the most influential error. The quantum method to exactly compares two patents is hard to simulate classically and thus creates a quantum advantage in patent analysis.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Tayyabah Hasan ◽  
Fahad Ahmad ◽  
Muhammad Rizwan ◽  
Nasser Alshammari ◽  
Saad Awadh Alanazi ◽  
...  

Fog computing (FC) based sensor networks have emerged as a propitious archetype for next-generation wireless communication technology with caching, communication, and storage capacity services in the edge. Mobile edge computing (MEC) is a new era of digital communication and has a rising demand for intelligent devices and applications. It faces performance deterioration and quality of service (QoS) degradation problems, especially in the Internet of Things (IoT) based scenarios. Therefore, existing caching strategies need to be enhanced to augment the cache hit ratio and manage the limited storage to accelerate content deliveries. Alternatively, quantum computing (QC) appears to be a prospect of more or less every typical computing problem. The framework is basically a merger of a deep learning (DL) agent deployed at the network edge with a quantum memory module (QMM). Firstly, the DL agent prioritizes caching contents via self organizing maps (SOMs) algorithm, and secondly, the prioritized contents are stored in QMM using a Two-Level Spin Quantum Phenomenon (TLSQP). After selecting the most appropriate lattice map (32 × 32) in 750,000 iterations using SOMs, the data points below the dark blue region are mapped onto the data frame to get the videos. These videos are considered a high priority for trending according to the input parameters provided in the dataset. Similarly, the light-blue color region is also mapped to get medium-prioritized content. After the SOMs algorithm’s training, the topographic error (TE) value together with quantization error (QE) value (i.e., 0.0000235) plotted the most appropriate map after 750,000 iterations. In addition, the power of QC is due to the inherent quantum parallelism (QP) associated with the superposition and entanglement principles. A quantum computer taking “n” qubits that can be stored and execute 2n presumable combinations of qubits simultaneously reduces the utilization of resources compared to conventional computing. It can be analyzed that the cache hit ratio will be improved by ranking the content, removing redundant and least important content, storing the content having high and medium prioritization using QP efficiently, and delivering precise results. The experiments for content prioritization are conducted using Google Colab, and IBM’s Quantum Experience is considered to simulate the quantum phenomena.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Andriyan Bayu Suksmono ◽  
Yuichiro Minato

AbstractFinding a Hadamard matrix (H-matrix) among all possible binary matrices of corresponding order is a hard problem that can be solved by a quantum computer. Due to the limitation on the number of qubits and connections in current quantum processors, only low order H-matrix search of orders 2 and 4 were implementable by previous method. In this paper, we show that by adopting classical searching techniques of the H-matrices, we can formulate new quantum computing methods for finding higher order ones. We present some results of finding H-matrices of order up to more than one hundred and a prototypical experiment of the classical-quantum resource balancing method that yields a 92-order H-matrix previously found by Jet Propulsion Laboratory researchers in 1961 using a mainframe computer. Since the exactness of the solutions can be verified by an orthogonality test performed in polynomial time; which is untypical for optimization of hard problems, the proposed method can potentially be used for demonstrating practical quantum supremacy in the near future.


Author(s):  
Kosuke Fukui ◽  
Shuntaro Takeda

Abstract Realizing a large-scale quantum computer requires hardware platforms that can simultaneously achieve universality, scalability, and fault tolerance. As a viable pathway to meeting these requirements, quantum computation based on continuous-variable optical systems has recently gained more attention due to its unique advantages and approaches. This review introduces several topics of recent experimental and theoretical progress in the optical continuous-variable quantum computation that we believe are promising. In particular, we focus on scaling-up technologies enabled by time multiplexing, bandwidth broadening, and integrated optics, as well as hardware-efficient and robust bosonic quantum error correction schemes.


2022 ◽  
Vol 9 ◽  
Author(s):  
Shohei Watabe ◽  
Michael Zach Serikow ◽  
Shiro Kawabata ◽  
Alexandre Zagoskin

In order to model and evaluate large-scale quantum systems, e.g., quantum computer and quantum annealer, it is necessary to quantify the “quantumness” of such systems. In this paper, we discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems, which could be used to characterize their degree of quantumness. Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution, i.e., the accessibility index. Applying it to the case of D-Wave One superconducting quantum annealing device, we find that its operation as described falls well within the quantum domain.


Author(s):  
Pablo Andres-Martinez ◽  
Chris Heunen

Abstract A while loop tests a termination condition on every iteration. On a quantum computer, such measurements perturb the evolution of the algorithm. We define a while loop primitive using weak measurements, offering a trade-off between the perturbation caused and the amount of information gained per iteration. This trade-off is adjusted with a parameter set by the programmer. We provide sufficient conditions that let us determine, with arbitrarily high probability, a worst-case estimate of the number of iterations the loop will run for. As an example, we solve Grover's search problem using a while loop and prove the quadratic quantum speed-up is maintained.


2022 ◽  
Vol 22 (1&2) ◽  
pp. 53-85
Author(s):  
Thomas G. Wong

The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \ln(1/\epsilon)$ time to reach a success probability of $1-\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\pi\sqrt{N}/2\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\pi\sqrt{N}/2$ time to reach a success probability of $1$.


Sign in / Sign up

Export Citation Format

Share Document