A comparison of the dispersion error of higher-order finite-difference time-domain schemes with Daubechies' multi-resolution time-domain schemes

Author(s):  
K.L. Shlager ◽  
J.B. Schneider
2021 ◽  
Vol 35 (11) ◽  
pp. 1428-1429
Author(s):  
Madison Le ◽  
Mohammed Hadi ◽  
Atef Elsherbeni

Sub-gridding errors for a 2D Finite-Difference Time-Domain (FDTD) simulation are compared for both the standard FDTD and Hybrid higher order FDTD cases. Subgridding contrast ratios of 1:3, 1:9, 1:15, and 1:27 are considered and analyzed. A correlation is seen between the increase of contrast ratio with the increase of sub-gridding errors for both standard and hybrid cases. However, a trend of errors reduction when using hybrid formulations over standard formulations is apparent for each contrast ratio.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T1-T16 ◽  
Author(s):  
David P. Connolly ◽  
Antonios Giannopoulos ◽  
Michael C. Forde

We have developed a higher order perfectly matched layer (PML) formulation to improve the absorption performance for finite-difference time-domain seismic modeling. First, we outlined a new unsplit “correction” approach, which allowed for traditional, first-order PMLs to be added directly to existing codes in a straightforward manner. Then, using this framework, we constructed a PML formulation that can be used to construct higher order PMLs of arbitrary order. The greater number of degrees of freedom associated with the higher order PML allow for enhanced flexibility of the PML stretching functions, thus potentially facilitating enhanced absorption performance. We found that the new approach can offer increased elastodynamic absorption, particularly for evanescent waves. We also discovered that the extra degrees of freedom associated with the higher order PML required careful optimization if enhanced absorption was to be achieved. Furthermore, these extra degrees of freedom increased the computational requirements in comparison with first-order schemes. We reached our formulations using one compact equation thus increasing the ease of implementation. Additionally, the formulations are based on a recursive integration approach that reduce PML memory requirements, and do not require special consideration for corner regions. We tested the new formulations to determine their ability to absorb body waves and surface waves. We also tested standard staggered grid stencils and rotated staggered grid stencils.


Sign in / Sign up

Export Citation Format

Share Document