absorption performance
Recently Published Documents





Jiang Guo ◽  
Zhuoran Chen ◽  
Xiaojian Xu ◽  
Xu Li ◽  
Hu Liu ◽  

AbstractIn this work, the engineered polyaniline (PANI)/epoxy composites reinforced with PANI-M (physical mixture of PANI spheres and fibers) exhibit significantly enhanced electromagnetic wave absorption performance and mechanical property. Due to the synergistic effect of PANI fillers with different geometries, the reflection loss of 10.0 wt% PANI-M/epoxy could reach − 36.8 dB at 17.7 GHz. Meanwhile, the mechanical properties (including tensile strength, toughness, and flexural strength) of PANI/epoxy were systematically studied. Compared with pure epoxy, the tensile strength of epoxy with 2.0 wt% PANI-M was improved to 86.2 MPa. Moreover, the PANI spheres (PANI-S) and PANI fibers (PANI-F) were prepared by the chemical oxidation polymerization method and interface polymerization method, respectively. The characterizations including scanning electron microscope, Fourier transform infrared spectra, and X-ray diffraction were applied to analyze the morphology and chemical and crystal structures of PANI filler. This work could provide the guideline for the preparation of advanced engineered epoxy nanocomposites for electromagnetic wave pollution treatment. Graphical abstract

2022 ◽  
pp. 136943322110561
Yafei Zhang ◽  
Dewen Liu ◽  
Sitong Fang ◽  
Min Lei ◽  
Zehua Zhu ◽  

The new staggered story isolated system is developed according to the base isolated system and the mid-story isolated system. Non-linear finite element model of an eighteen stories new staggered story isolated structure is established. For a comparative analysis, the models of a base isolated structure, a mid-story isolated structure, and an aseismic structure are also established, and their shock absorption performances and damages are analyzed for comparison. The results indicate that the new staggered story isolated structure has a small seismic response, good shock absorption performance which is feasible for application. Besides, the shock absorption performance of the new staggered story isolated structure is a little worse than the base isolated structure but slightly better than the mid-story isolated structure. The bottom of core tube and the story below the frame isolated story have large acceleration response which needs to be paid more attention in design.

2022 ◽  
Vol 6 (1) ◽  
pp. 4
Ga-young Jung ◽  
Seul-gi Lee ◽  
Jun-seo Lee ◽  
Byung-chol Ma

There have been studies recently on bubble-column scrubbers with low cost and high efficiency for the absorption and treatment of hazardous gases in the event of a chemical spill. Bubble columns are vulnerable to freezing at temperatures below zero because the absorbents generally do not circulate. To address this issue, this study focused on the applicability, absorbed amount, and performance of brine as an absorbent. Under three different temperatures, i.e., −5 °C, −8 °C and −10 °C we examined brine (NaCl, CaCl2, and MgCl2) by varying the concentration required at each temperature. Following the experiments, CaCl2 brine was determined as the optimal brine for its absorption performance and affordability. Based on the experimental results, the absorption performance for ammonia, ethylene oxide, and methylamine, which are hazardous and water-soluble gases among accident preparedness substances (APS), was tested by using ASEPN PLUS. Our results suggested although the efficiency dropped by about 5% to 25% when brine was used as an absorbent, it can be used at the low temperatures because the gas solubility increased with decreasing temperature. Therefore, if brine, as an alternative, is used at temperatures about 15 °C, it can operate efficiently and stably without deterioration in the absorption performance. Given our experimental results and design data on the absorbed amount and absorbent replacement period for major hazardous gases are utilized to prevent bubble columns from freezing, it can be commercially used for small and medium-sized enterprises because it can help reduce installation and operation costs.

2022 ◽  
Vol 904 ◽  
pp. 17-25
Bo Hao Xu ◽  
Shuai Wang ◽  
Kai Fa Zhou ◽  
Wen Yi Ma ◽  
Nan Sun

There exist some problems in the crash box and anti-collision beam sandwich structure, such as monotone deformation pattern and uneconomical energy absorption performance. In order to raise the deformation capacity and energy absorption performance of sandwich structure, centrosymmetric reentrant honeycomb (CRH) and hexagonal centrosymmetric reentrant honeycomb (HCRH) are proposed based on auxetic reentrant honeycomb (ARH) in this work. Based on HCRH, four kinds of transverse combination structures and two kinds of longitudinal combination structures are obtained. The results of specific energy absorption show that the energy absorption capacity of the angular contact homodromous combination structure (ACOC) is about 3 times that of the other three transverse combination structures. Compared with longitudinal heterodromous combination structure (LHEC), the energy absorption capacity of longitudinal homodromous combination structure (LHOC) is improved by 72.7%.

Sign in / Sign up

Export Citation Format

Share Document