scholarly journals Accurate evaluation of potential integrals with Gauss quadrature formulas for rational functions

Author(s):  
Guido Lombardi ◽  
Roberto D. Graglia
1994 ◽  
Vol 50 (1-3) ◽  
pp. 159-170 ◽  
Author(s):  
Adhemar Bultheel ◽  
Erik Hendriksen ◽  
Pablo González-Vera ◽  
Olav Njåstad

1987 ◽  
Vol 52 (3) ◽  
pp. 317-327 ◽  
Author(s):  
Franz Peherstorfer

2019 ◽  
Vol 13 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Gradimir Milovanovic ◽  
Miroslav Pranic ◽  
Miodrag Spalevic

The paper deals with new contributions to the theory of the Gauss quadrature formulas with multiple nodes that are published after 2001, including numerical construction, error analysis and applications. The first part was published in Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials (W. Gautschi, F. Marcellan, and L. Reichel, eds.) [J. Comput. Appl. Math. 127 (2001), no. 1-2, 267-286].


Author(s):  
Y. A. Rouba ◽  
K. A. Smatrytski ◽  
Y. V. Dirvuk

In this paper we propose a new approach to the construction of quadrature formulas of interpolation rational type on an interval. In the introduction, a brief analysis of the results on the topic of the research is carried out. Most attention is paid to the works of mathematicians of the Belarusian school on approximation theory – Gauss, Lobatto, and Radau quadrature formulas with nodes at the zeros of the rational Chebyshev – Markov fractions. Rational fractions on the segment, generalizing the classical orthogonal Jacobi polynomials with one weight, are defined, and some of their properties are described. One of the main results of this paper consists in constructing quadrature formulas with nodes at zeros of the introduced rational fractions, calculating their coefficients in an explicit form, and estimating the remainder. This result is preceded by some auxiliary statements describing the properties of special rational functions. Classical methods of mathematical analysis, approximation theory, and the theory of functions of a complex variable are used for proof. In the conclusion a numerical analysis of the efficiency of the constructed quadrature formulas is carried out. Meanwhile, the choice of the parameters on which the nodes of the quadrature formulas depend is made in several standard ways. The obtained results can be applied for further research of rational quadrature formulas, as well as in numerical analysis.


Author(s):  
Walter Gautschi

The connection between orthogonal polynomials and quadrature rules has already been elucidated in §1.4. The centerpieces were the Gaussian quadrature rule and its close relatives—the Gauss–Radau and Gauss–Lobatto rules (§1.4.2). There are, however, a number of further extensions of Gauss’s approach to numerical quadrature. Principal among them are Kronrod’s idea of extending an n-point Gauss rule to a (2n + 1)-point rule by inserting n + 1 additional nodes and choosing all weights in such a way as to maximize the degree of exactness (cf. Definition 1.44), and Turán’s extension of the Gauss quadrature rule allowing not only function values, but also derivative values, to appear in the quadrature sum. More recent extensions relate to the concept of accuracy, requiring exactness not only for polynomials of a certain degree, but also for rational functions with prescribed poles. Gauss quadrature can also be adapted to deal with Cauchy principal value integrals, and there are other applications of Gauss’s ideas, for example, in combination with Stieltjes’s procedure or the modified Chebyshev algorithm, to generate polynomials orthogonal on several intervals, or, in comnbination with Lanczos’s algorithm, to estimate matrix functionals. The present section is to discuss these questions in turn, with computational aspects foremost in our mind. We have previously seen in Chapter 2 how Gauss quadrature rules can be effectively employed in the context of computational methods; for example, in computing the absolute and relative condition numbers of moment maps (§2.1.5), or as a means of discretizing measures in the multiple-component discretization method for orthogonal polynomials (§2.2.5) and in Stieltjes-type methods for Sobolev orthogonal polynomials (§2.5.2). It is time now to discuss the actual computation of these, and related, quadrature rules.


Sign in / Sign up

Export Citation Format

Share Document