A new delay-distribution-dependent robust stability criterion for uncertain systems with time-varying delay

Author(s):  
Xue Yang ◽  
Wei-Jun Ma ◽  
Xian Zhang
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xing He ◽  
Li-Jun Song ◽  
Yu-Bin Wu ◽  
Zi-Yu Zhou

Interval time-varying delay is common in control process, e.g., automatic robot control system, and its stability analysis is of great significance to ensure the reliable control of industrial processes. In order to improve the conservation of the existing robust stability analysis method, this paper considers a class of linear systems with norm-bounded uncertainty and interval time-varying delay as the research object. Less conservative robust stability criterion is put forward based on augmented Lyapunov-Krasovskii (L-K) functional method and reciprocally convex combination. Firstly, the delay interval is partitioned into multiple equidistant subintervals, and a new Lyapunov-Krasovskii functional comprising quadruple-integral term is introduced for each subinterval. Secondly, a novel delay-dependent stability criterion in terms of linear matrix inequalities (LMIs) is given by less conservative Wirtinger-based integral inequality approach. Three numerical comparative examples are given to verify the superiority of the proposed approach in reducing the conservation of conclusion. For the first example about closed-loop control systems with interval time-varying delays, the proposed robust stability criterion could get MADB (Maximum Allowable Delay Bound) about 0.3 more than the best results in the previous literature; and, for two other uncertain systems with interval time-varying delays, the MADB results obtained by the proposed method are better than those in the previous literature by about 0.045 and 0.054, respectively. All the example results obtained in this paper clearly show that our approach is better than other existing methods.


2012 ◽  
Vol 461 ◽  
pp. 633-636
Author(s):  
Cheng Wang

The problem of delay-dependent robust stability of uncertain stochastic systems with time-varying delay is discussed in this paper. Based on the Lyapunov-Krasovskii theory and free-weighting matrix technique, new delay-dependent stability criterion is presented. The criterion is in terms of linear matrix inequality (LMI) which can be solved by various available algorithms.


Sign in / Sign up

Export Citation Format

Share Document