sliding mode control
Recently Published Documents





Mechatronics ◽  
2022 ◽  
Vol 82 ◽  
pp. 102717
Yongchao Wang ◽  
Zengjie Zhang ◽  
Cong Li ◽  
Martin Buss

2022 ◽  
Vol 20 (2) ◽  
pp. 223-232
Larbi Djilali ◽  
Anuar Badillo-Olvera ◽  
Yennifer Yuliana Rios ◽  
Harold Lopez-Beltran ◽  
Lakhdar Saihi

2022 ◽  
Vol 415 ◽  
pp. 126718
Zhi-Ye Zhao ◽  
Xiao-Zheng Jin ◽  
Xiao-Ming Wu ◽  
Hai Wang ◽  
Jing Chi

Guiling Li ◽  
Chen Peng

This paper investigates the robust stabilization of the adaptive sliding mode control for a class of linear systems subjected to external disturbance via event-triggered communication (ETC) scheme. First, in order to reduce the bandwidth utilization, a discrete ETC scheme is proposed and the networked sliding mode function is derived using the ETC scheme. Based on the derived sliding mode function, a reduced-order networked sliding mode dynamics with communication delay is established. Second, by constructing a Lyapunov–Krasovskii functional (LKF), asymptotic stability and stabilization criteria of the reduced-order sliding mode dynamics are given in the form of linear matrix inequalities. According to the stabilization result, a novel event-triggered-based adaptive sliding mode controller is designed while guaranteeing the reachability of the sliding surface. Finally, simulation results illustrate the effectiveness and merit of the developed method.

Liqiang Wang ◽  
Xianqing Wu ◽  
Meizhen Lei

The stabilization and disturbance rejection of the translational oscillator with a rotating actuator (TORA) are considered in this paper. To deal with the control issues, a novel continuous sliding mode control method is designed for the TORA system. Compared with existing sliding mode control methods for the TORA system, the proposed method here is continuous. Specifically, first, a global diffeomorphism is introduced for the model of the TORA system. Then, an elaborate sliding manifold is constructed, and a continuous sliding mode control scheme is developed to ensure the convergence of the sliding manifold. Furthermore, rigorous theoretical analysis is given. Finally, simulation tests are carried out, and the obtained simulation results demonstrate that the proposed method exhibits superior stabilization control performance and strong robustness.

Sign in / Sign up

Export Citation Format

Share Document