Random Projection with Robust Linear Discriminant Analysis Model in Face Recognition

Author(s):  
Pang Ying Han ◽  
Andrew Teoh Beng Jin
2018 ◽  
Vol 78 (5) ◽  
pp. 1208-1218 ◽  
Author(s):  
Bartosz Szeląg ◽  
Łukasz Bąk ◽  
Roman Suligowski ◽  
Jarosław Górski

Abstract In the paper, a comparison of prediction results concerning the annual number of discharges of stormwater from the drainage system due to stormwater overflows is depicted. The prediction has been computed by means of storm water management model (SWMM) and probabilistic models. Regarding the probabilistic modelling some simple statistical models such as logit, probit, Gompertz and linear discriminant analysis model have been applied, and as for the hydrodynamic modelling a generator of synthetic rainfall based on the Monte Carlo method has been used. The analyses conducted has shown that logit, probit and Gompertz models give outputs that are comparable with the results of hydrodynamic modelling and are concordant with observations. Whereas the annual number of stormwater discharge predicted by the linear discriminant analysis model is significantly lower than the number obtained by hydrodynamic modelling. The calculations made have confirmed the possibility of using statistical models as an alternative for developing labour-consuming and complex hydrodynamic models. The statistical models can be used successfully to predict the stormwater overflows operation provided that the measurements of rainfall in the catchment and of filling the overflow are available.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-Sheng Chen ◽  
Chu Zhang ◽  
Shengyong Chen

Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage. Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based algorithms, experimental results exhibit that our GLDA approach gives superior performance.


Sign in / Sign up

Export Citation Format

Share Document