superior performance
Recently Published Documents


TOTAL DOCUMENTS

5889
(FIVE YEARS 3988)

H-INDEX

93
(FIVE YEARS 42)

2022 ◽  
Vol 16 (4) ◽  
pp. 1-43
Author(s):  
Aida Sheshbolouki ◽  
M. Tamer Özsu

We study the fundamental problem of butterfly (i.e., (2,2)-bicliques) counting in bipartite streaming graphs. Similar to triangles in unipartite graphs, enumerating butterflies is crucial in understanding the structure of bipartite graphs. This benefits many applications where studying the cohesion in a graph shaped data is of particular interest. Examples include investigating the structure of computational graphs or input graphs to the algorithms, as well as dynamic phenomena and analytic tasks over complex real graphs. Butterfly counting is computationally expensive, and known techniques do not scale to large graphs; the problem is even harder in streaming graphs. In this article, following a data-driven methodology, we first conduct an empirical analysis to uncover temporal organizing principles of butterflies in real streaming graphs and then we introduce an approximate adaptive window-based algorithm, sGrapp, for counting butterflies as well as its optimized version sGrapp-x. sGrapp is designed to operate efficiently and effectively over any graph stream with any temporal behavior. Experimental studies of sGrapp and sGrapp-x show superior performance in terms of both accuracy and efficiency.


2022 ◽  
Vol 16 (2) ◽  
pp. 1-18
Author(s):  
Hanlu Wu ◽  
Tengfei Ma ◽  
Lingfei Wu ◽  
Fangli Xu ◽  
Shouling Ji

Crowdsourcing has attracted much attention for its convenience to collect labels from non-expert workers instead of experts. However, due to the high level of noise from the non-experts, a label aggregation model that infers the true label from noisy crowdsourced labels is required. In this article, we propose a novel framework based on graph neural networks for aggregating crowd labels. We construct a heterogeneous graph between workers and tasks and derive a new graph neural network to learn the representations of nodes and the true labels. Besides, we exploit the unknown latent interaction between the same type of nodes (workers or tasks) by adding a homogeneous attention layer in the graph neural networks. Experimental results on 13 real-world datasets show superior performance over state-of-the-art models.


2022 ◽  
Vol 40 (4) ◽  
pp. 1-40
Author(s):  
Weiyu Ji ◽  
Xiangwu Meng ◽  
Yujie Zhang

POI recommendation has become an essential means to help people discover attractive places. Intuitively, activities have an important impact on users’ decision-making, because users select POIs to attend corresponding activities. However, many existing studies ignore the social motivation of user behaviors and regard all check-ins as influenced only by individual user interests. As a result, they cannot model user preferences accurately, which degrades recommendation effectiveness. In this article, from the perspective of activities, this study proposes a probabilistic generative model called STARec. Specifically, based on the social effect of activities, STARec defines users’ social preferences as distinct from their individual interests and combines these with individual user activity interests to effectively depict user preferences. Moreover, the inconsistency between users’ social preferences and their decisions is modeled. An activity frequency feature is introduced to acquire accurate user social preferences because of close correlation between these and the key impact factor of corresponding check-ins. An alias sampling-based training method was used to accelerate training. Extensive experiments were conducted on two real-world datasets. Experimental results demonstrated that the proposed STARec model achieves superior performance in terms of high recommendation accuracy, robustness to data sparsity, effectiveness in handling cold-start problems, efficiency, and interpretability.


Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122936
Author(s):  
Shahriyar Ghazanfari Holagh ◽  
Maghsoud Abdollahi Haghghi ◽  
Ata Chitsaz

2022 ◽  
Vol 40 (3) ◽  
pp. 1-33
Author(s):  
Xingshan Zeng ◽  
Jing Li ◽  
Lingzhi Wang ◽  
Kam-Fai Wong

The popularity of social media platforms results in a huge volume of online conversations produced every day. To help users better engage in online conversations, this article presents a novel framework to automatically recommend conversations to users based on what they said and how they behaved in their chatting histories. While prior work mostly focuses on post-level recommendation, we aim to explore conversation context and model the interaction patterns therein. Furthermore, to characterize personal interests from interleaving user interactions, we learn (1) global interactions , represented by topic and discourse word clusters to reflect users’ content and pragmatic preferences, and (2) local interactions , encoding replying relations and chronological order of conversation turns to characterize users’ prior behavior. Built on collaborative filtering, our model captures global interactions via discovering word distributions to represent users’ topical interests and discourse behaviors, while local interactions are explored with graph-structured networks exploiting both reply structure and temporal features. Extensive experiments on three datasets from Twitter and Reddit show that our model coupling global and local interactions significantly outperforms the state-of-the-art model. Further analyses show that our model is able to capture meaningful features from global and local interactions, which results in its superior performance in conversation recommendation.


Author(s):  
Mohammadreza Samadi ◽  
Maryam Mousavian ◽  
Saeedeh Momtazi

Nowadays, broadcasting news on social media and websites has grown at a swifter pace, which has had negative impacts on both the general public and governments; hence, this has urged us to build a fake news detection system. Contextualized word embeddings have achieved great success in recent years due to their power to embed both syntactic and semantic features of textual contents. In this article, we aim to address the problem of the lack of fake news datasets in Persian by introducing a new dataset crawled from different news agencies, and propose two deep models based on the Bidirectional Encoder Representations from Transformers model (BERT), which is a deep contextualized pre-trained model for extracting valuable features. In our proposed models, we benefit from two different settings of BERT, namely pool-based representation, which provides a representation for the whole document, and sequence representation, which provides a representation for each token of the document. In the former one, we connect a Single Layer Perceptron (SLP) to the BERT to use the embedding directly for detecting fake news. The latter one uses Convolutional Neural Network (CNN) after the BERT’s embedding layer to extract extra features based on the collocation of words in a corpus. Furthermore, we present the TAJ dataset, which is a new Persian fake news dataset crawled from news agencies’ websites. We evaluate our proposed models on the newly provided TAJ dataset as well as the two different Persian rumor datasets as baselines. The results indicate the effectiveness of using deep contextualized embedding approaches for the fake news detection task. We also show that both BERT-SLP and BERT-CNN models achieve superior performance to the previous baselines and traditional machine learning models, with 15.58% and 17.1% improvement compared to the reported results by Zamani et al. [ 30 ], and 11.29% and 11.18% improvement compared to the reported results by Jahanbakhsh-Nagadeh et al. [ 9 ].


10.29007/r6cd ◽  
2022 ◽  
Author(s):  
Hoang Nhut Huynh ◽  
My Duyen Nguyen ◽  
Thai Hong Truong ◽  
Quoc Tuan Nguyen Diep ◽  
Anh Tu Tran ◽  
...  

Segmentation is one of the most common methods for analyzing and processing medical images, assisting doctors in making accurate diagnoses by providing detailed information about the required body part. However, segmenting medical images presents a number of challenges, including the need for medical professionals to be trained, the fact that it is time-consuming and prone to errors. As a result, it appears that an automated medical image segmentation system is required. Deep learning algorithms have recently demonstrated superior performance for segmentation tasks, particularly semantic segmentation networks that provide a pixel-level understanding of images. U- Net for image segmentation is one of the modern complex networks in the field of medical imaging; several segmentation networks have been built on its foundation with the advancements of Recurrent Residual convolutional units and the construction of recurrent residual convolutional neural network based on U-Net (R2U-Net). R2U-Net is used to perform trachea and bronchial segmentation on a dataset of 36,000 images. With a variety of experiments, the proposed segmentation resulted in a dice-coefficient of 0.8394 on the test dataset. Finally, a number of research issues are raised, indicating the need for future improvements.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 42
Author(s):  
Peng Tang ◽  
Yuehong Dai ◽  
Junfeng Chen

This paper studies the multi-source disturbances attenuation problem on the yaw motion of unmanned aerial helicopter with a variable-speed rotor. The yaw motion subsystem dominated by an electrically-driven tail rotor is firstly introduced, and its trajectory accuracy requires particularly close attention. To this end, we establish a fourth-order yaw error dynamic equation; subsequently, a nonlinear robust control scheme based on optimal H∞ principle is developed, consisting of laws of virtual functions, parameter estimation and a compensation signal. The novelty of this scheme lies in unifying the techniques to deal with the uncertain parameters, noise perturbations, actuator output fault and external airflow turbulence into a simple framework. Stability analysis guarantees that the yaw closed-loop system has the predefined performance of disturbance suppression in the sense of a finite L2-gain. Comparison results with the extended state observer based backstepping controller verify the effectiveness and superior performance of proposed scheme in an aircraft prototype.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Roberto Fedrigo ◽  
Dan J. Kadrmas ◽  
Patricia E. Edem ◽  
Lauren Fougner ◽  
Ivan S. Klyuzhin ◽  
...  

Abstract Background Positron emission tomography (PET) with prostate specific membrane antigen (PSMA) have shown superior performance in detecting metastatic prostate cancers. Relative to [18F]fluorodeoxyglucose ([18F]FDG) PET images, PSMA PET images tend to visualize significantly higher-contrast focal lesions. We aim to evaluate segmentation and reconstruction algorithms in this emerging context. Specifically, Bayesian or maximum a posteriori (MAP) image reconstruction, compared to standard ordered subsets expectation maximization (OSEM) reconstruction, has received significant interest for its potential to reach convergence with minimal noise amplifications. However, few phantom studies have evaluated the quantitative accuracy of such reconstructions for high contrast, small lesions (sub-10 mm) that are typically observed in PSMA images. In this study, we cast 3 mm–16-mm spheres using epoxy resin infused with a long half-life positron emitter (sodium-22; 22Na) to simulate prostate cancer metastasis. The anthropomorphic Probe-IQ phantom, which features a liver, bladder, lungs, and ureters, was used to model relevant anatomy. Dynamic PET acquisitions were acquired and images were reconstructed with OSEM (varying subsets and iterations) and BSREM (varying β parameters), and the effects on lesion quantitation were evaluated. Results The 22Na lesions were scanned against an aqueous solution containing fluorine-18 (18F) as the background. Regions-of-interest were drawn with MIM Software using 40% fixed threshold (40% FT) and a gradient segmentation algorithm (MIM’s PET Edge+). Recovery coefficients (RCs) (max, mean, peak, and newly defined “apex”), metabolic tumour volume (MTV), and total tumour uptake (TTU) were calculated for each sphere. SUVpeak and SUVapex had the most consistent RCs for different lesion-to-background ratios and reconstruction parameters. The gradient-based segmentation algorithm was more accurate than 40% FT for determining MTV and TTU, particularly for lesions $$\le$$ ≤  6 mm in diameter (R2 = 0.979–0.996 vs. R2 = 0.115–0.527, respectively). Conclusion An anthropomorphic phantom was used to evaluate quantitation for PSMA PET imaging of metastatic prostate cancer lesions. BSREM with β = 200–400 and OSEM with 2–5 iterations resulted in the most accurate and robust measurements of SUVmean, MTV, and TTU for imaging conditions in 18F-PSMA PET/CT images. SUVapex, a hybrid metric of SUVmax and SUVpeak, was proposed for robust, accurate, and segmentation-free quantitation of lesions for PSMA PET.


2022 ◽  
Author(s):  
Sathiya Satchi Christopher ◽  
Vellaisamy Kumaresan

Abstract The intermittency of solar thermal energy warrants the integration/utilization of thermal energy storage system for efficient operation. Effective utilization of solar water heating (SWH) system can reduce nearly 70 - 90 % of the energy cost incurred for water heating applications. In this study, a compound parabolic concentrator (CPC) solar collector is paired with thermal energy storage (TES) system for the improvement of thermal performance of the collector through enhanced heat transfer rate and minimizing the heat losses. Effects of varying mass flow rate and different arrangement of phase change materials (PCMs) on the performance of the CPC solar collector are investigated. A study of the influence of PCMs configurations in TES systems viz three PCMs (Case 1) and five PCMs (Case 2) on the energy efficiency, exergy efficiency and overall loss coefficient of the solar collector and TES system is made and compared with sensible TES system. The results show the attainment of maximum thermal efficiency of 70 % for ‘Case 2’. Comparison with ‘Case 1’, ‘Case 2’ exhibited a reduction heat loss of 4 % from the TES system. Results of exergy study reveal a superior performance in Case 2 over other configurations.


Sign in / Sign up

Export Citation Format

Share Document