Optimal Power Flow with Four Objective Functions using Improved Differential Evolution Algorithm: Case Study IEEE 57-bus power system

Author(s):  
Murtadha Al-Kaabi ◽  
Layth Al-Bahrani ◽  
Virgil Dumbrava ◽  
Mircea Eremia
Author(s):  
Md Alamgir Hossain ◽  
Karam M. Sallam ◽  
Seham S. Elsayed ◽  
Ripon K. Chakrabortty ◽  
Michael J. Ryan

In this paper, a multi-operator differential evolution algorithm (MODE) is proposed to solve the Optimal Power Flow (OPF) problem and is called MODE-OPF. The MODE-OPF utilizes the strengths of more than one differential evolution (DE) operator in a single algorithmic framework. Additionally, an adaptive method (AM) is proposed to update the number of solutions evolved by each DE operator based on both the diversity of population and quality of solutions. This adaptive method has the ability to maintain diversity at the early stages of the optimization process and boost convergence at the later ones. The performance of the proposed MODE-OPF is tested by solving OPF problems for both small and large IEEE bus systems (i.e., IEEE-30 and IEEE-118) while considering the intermittent solar and wind power generation. To prove the suitability of this proposed algorithm, its performance has been compared against several state-of-the-art optimization algorithms, where MODE-OPF outperforms other algorithms in all experimental results and thereby improving a network's performance with lower cost. MODE-OPF decreases the total generation cost up to 24.08%, the real power loss up to 6.80% and the total generation cost with emission up to 8.56%.


2017 ◽  
Vol 11 (1) ◽  
pp. 177-192
Author(s):  
Gonggui Chen ◽  
Zhengmei Lu ◽  
Zhizhong Zhang ◽  
Zhi Sun

Objective: In this paper, an improved hybrid differential evolution (IHDE) algorithm based on differential evolution (DE) algorithm and particle swarm optimization (PSO) has been proposed to solve the optimal power flow (OPF) problem of power system which is a multi-constrained, large-scale and nonlinear optimization problem. Method: In IHDE algorithm, the DE is employed as the main optimizer; and the three factors of PSO, which are inertia, cognition, and society, are used to improve the mutation of DE. Then the learning mechanism and the adaptive control of the parameters are added to the crossover, and the greedy selection considering the value of penalty function is proposed. Furthermore, the replacement mechanism is added to the IHDE for reducing the probability of falling into the local optimum. The performance of this method is tested on the IEEE30-bus and IEEE57-bus systems, and the generator quadratic cost and the transmission real power losses are considered as objective functions. Results: The simulation results demonstrate that IHDE algorithm can solve the OPF problem successfully and obtain the better solution compared with other methods reported in the recent literatures.


Sign in / Sign up

Export Citation Format

Share Document