A comprehensive leap motion database for hand gesture recognition

Author(s):  
Safa Ameur ◽  
Anouar Ben Khalifa ◽  
Mohamed Salim Bouhlel
2015 ◽  
Vol 75 (22) ◽  
pp. 14991-15015 ◽  
Author(s):  
Giulio Marin ◽  
Fabio Dominio ◽  
Pietro Zanuttigh

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4566
Author(s):  
Chanhwi Lee ◽  
Jaehan Kim ◽  
Seoungbae Cho ◽  
Jinwoong Kim ◽  
Jisang Yoo ◽  
...  

The use of human gesturing to interact with devices such as computers or smartphones has presented several problems. This form of interaction relies on gesture interaction technology such as Leap Motion from Leap Motion, Inc, which enables humans to use hand gestures to interact with a computer. The technology has excellent hand detection performance, and even allows simple games to be played using gestures. Another example is the contactless use of a smartphone to take a photograph by simply folding and opening the palm. Research on interaction with other devices via hand gestures is in progress. Similarly, studies on the creation of a hologram display from objects that actually exist are also underway. We propose a hand gesture recognition system that can control the Tabletop holographic display based on an actual object. The depth image obtained using the latest Time-of-Flight based depth camera Azure Kinect is used to obtain information about the hand and hand joints by using the deep-learning model CrossInfoNet. Using this information, we developed a real time system that defines and recognizes gestures indicating left, right, up, and down basic rotation, and zoom in, zoom out, and continuous rotation to the left and right.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2106 ◽  
Author(s):  
Linchu Yang ◽  
Ji’an Chen ◽  
Weihang Zhu

Dynamic hand gesture recognition is one of the most significant tools for human–computer interaction. In order to improve the accuracy of the dynamic hand gesture recognition, in this paper, a two-layer Bidirectional Recurrent Neural Network for the recognition of dynamic hand gestures from a Leap Motion Controller (LMC) is proposed. In addition, based on LMC, an efficient way to capture the dynamic hand gestures is identified. Dynamic hand gestures are represented by sets of feature vectors from the LMC. The proposed system has been tested on the American Sign Language (ASL) datasets with 360 samples and 480 samples, and the Handicraft-Gesture dataset, respectively. On the ASL dataset with 360 samples, the system achieves accuracies of 100% and 96.3% on the training and testing sets. On the ASL dataset with 480 samples, the system achieves accuracies of 100% and 95.2%. On the Handicraft-Gesture dataset, the system achieves accuracies of 100% and 96.7%. In addition, 5-fold, 10-fold, and Leave-One-Out cross-validation are performed on these datasets. The accuracies are 93.33%, 94.1%, and 98.33% (360 samples), 93.75%, 93.5%, and 98.13% (480 samples), and 88.66%, 90%, and 92% on ASL and Handicraft-Gesture datasets, respectively. The developed system demonstrates similar or better performance compared to other approaches in the literature.


Sign in / Sign up

Export Citation Format

Share Document