machine learning
Recently Published Documents


TOTAL DOCUMENTS

102881
(FIVE YEARS 75797)

H-INDEX

193
(FIVE YEARS 62)

Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 69-81
Author(s):  
Hamed Dabiri ◽  
Khashayar Rahimzadeh ◽  
Ali Kheyroddin

2022 ◽  
Vol 15 (1) ◽  
pp. 1-20
Author(s):  
Santhilata Kuppili Venkata ◽  
Paul Young ◽  
Mark Bell ◽  
Alex Green

Digital transformation in government has brought an increase in the scale, variety, and complexity of records and greater levels of disorganised data. Current practices for selecting records for transfer to The National Archives (TNA) were developed to deal with paper records and are struggling to deal with this shift. This article examines the background to the problem and outlines a project that TNA undertook to research the feasibility of using commercially available artificial intelligence tools to aid selection. The project AI for Selection evaluated a range of commercial solutions varying from off-the-shelf products to cloud-hosted machine learning platforms, as well as a benchmarking tool developed in-house. Suitability of tools depended on several factors, including requirements and skills of transferring bodies as well as the tools’ usability and configurability. This article also explores questions around trust and explainability of decisions made when using AI for sensitive tasks such as selection.


Author(s):  
Warih Maharani ◽  
Veronikha Effendy

<span lang="EN-US">The popularity of social media has drawn the attention of researchers who have conducted cross-disciplinary studies examining the relationship between personality traits and behavior on social media. Most current work focuses on personality prediction analysis of English texts, but Indonesian has received scant attention. Therefore, this research aims to predict user’s personalities based on Indonesian text from social media using machine learning techniques. This paper evaluates several machine learning techniques, including <a name="_Hlk87278444"></a>naive Bayes (NB), K-nearest neighbors (KNN), and support vector machine (SVM), based on semantic features including emotion, sentiment, and publicly available Twitter profile. We predict the personality based on the big five personality model, the most appropriate model for predicting user personality in social media. We examine the relationships between the semantic features and the Big Five personality dimensions. The experimental results indicate that the Big Five personality exhibit distinct emotional, sentimental, and social characteristics and that SVM outperformed NB and KNN for Indonesian. In addition, we observe several terms in Indonesian that specifically refer to each personality type, each of which has distinct emotional, sentimental, and social features.</span>


2022 ◽  
Vol 3 ◽  
pp. 100044
Author(s):  
Hamed Dabiri ◽  
Mahdi Kioumarsi ◽  
Ali Kheyroddin ◽  
Amirreza Kandiri ◽  
Farid Sartipi

2022 ◽  
Vol 3 (2) ◽  
pp. 1-28
Author(s):  
Besat Kassaie ◽  
Elizabeth L. Irving ◽  
Frank Wm. Tompa

The standard approach to expert-in-the-loop machine learning is active learning, where, repeatedly, an expert is asked to annotate one or more records and the machine finds a classifier that respects all annotations made until that point. We propose an alternative approach, IQRef , in which the expert iteratively designs a classifier and the machine helps him or her to determine how well it is performing and, importantly, when to stop, by reporting statistics on a fixed, hold-out sample of annotated records. We justify our approach based on prior work giving a theoretical model of how to re-use hold-out data. We compare the two approaches in the context of identifying a cohort of EHRs and examine their strengths and weaknesses through a case study arising from an optometric research problem. We conclude that both approaches are complementary, and we recommend that they both be employed in conjunction to address the problem of cohort identification in health research.


Sign in / Sign up

Export Citation Format

Share Document