Loss probabilities and delay and jitter distributions in a finite buffer queue with heterogeneous batch Markovian arrival processes

Author(s):  
D. Kofman ◽  
H. Korezlioglu
2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Andrzej Chydzinski ◽  
Blazej Adamczyk

We present an analysis of the number of losses, caused by the buffer overflows, in a finite-buffer queue with batch arrivals and autocorrelated interarrival times. Using the batch Markovian arrival process, the formulas for the average number of losses in a finite time interval and the stationary loss ratio are shown. In addition, several numerical examples are presented, including illustrations of the dependence of the number of losses on the average batch size, buffer size, system load, autocorrelation structure, and time.


2015 ◽  
Vol 52 (3) ◽  
pp. 826-840 ◽  
Author(s):  
Fabrice Guillemin ◽  
Bruno Sericola

We study congestion periods in a finite fluid buffer when the net input rate depends upon a recurrent Markov process; congestion occurs when the buffer content is equal to the buffer capacity. Similarly to O'Reilly and Palmowski (2013), we consider the duration of congestion periods as well as the associated volume of lost information. While these quantities are characterized by their Laplace transforms in that paper, we presently derive their distributions in a typical stationary busy period of the buffer. Our goal is to compute the exact expression of the loss probability in the system, which is usually approximated by the probability that the occupancy of the infinite buffer is greater than the buffer capacity under consideration. Moreover, by using general results of the theory of Markovian arrival processes, we show that the duration of congestion and the volume of lost information have phase-type distributions.


1999 ◽  
Vol 36 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Nikolay Likhanov ◽  
Ravi R. Mazumdar

In this paper we derive asymptotically exact expressions for buffer overflow probabilities and cell loss probabilities for a finite buffer which is fed by a large number of independent and stationary sources. The technique is based on scaling, measure change and local limit theorems and extends the recent results of Courcoubetis and Weber on buffer overflow asymptotics. We discuss the cases when the buffers are of the same order as the transmission bandwidth as well as the case of small buffers. Moreover we show that the results hold for a wide variety of traffic sources including ON/OFF sources with heavy-tailed distributed ON periods, which are typical candidates for so-called ‘self-similar’ inputs, showing that the asymptotic cell loss probability behaves in much the same manner for such sources as for the Markovian type of sources, which has important implications for statistical multiplexing. Numerical validation of the results against simulations are also reported.


2012 ◽  
Vol 46 (3) ◽  
pp. 189-209
Author(s):  
Medhi Pallabi ◽  
Amit Choudhury

2006 ◽  
Vol 21 (1) ◽  
pp. 19-46 ◽  
Author(s):  
Dorothée Honhon ◽  
Sridhar Seshadri

We consider the problem of admission control to a multiserver finite buffer queue under partial information. The controller cannot see the queue but is informed immediately if an admitted customer is lost due to buffer overflow. Turning away (i.e., blocking) customers is costly and so is losing an admitted customer. The latter cost is greater than that of blocking. The controller's objective is to minimize the average cost of blocking and rejection per incoming customer. Lin and Ross [11] studied this problem for multiserver loss systems. We extend their work by allowing a finite buffer and the arrival process to be of the renewal type. We propose a control policy based on a novel state aggregation approach that exploits the regenerative structure of the system, performs well, and gives a lower bound on the optimal cost. The control policy is inspired by a simulation technique that reduces the variance of the estimators by not simulating the customer service process. Numerical experiments show that our bound varies with the load offered to the system and is typically within 1% and 10% of the optimal cost. Also, our bound is tight in the important case when the cost of blocking is low compared to the cost of rejection and the load offered to the system is high. The quality of the bound degrades with the degree of state aggregation, but the computational effort is comparatively small. Moreover, the control policies that we obtain perform better compared to a heuristic suggested by Lin and Ross. The state aggregation technique developed in this article can be used more generally to solve problems in which the objective is to control the time to the end of a cycle and the quality of the information available to the controller degrades with the length of the cycle.


Sign in / Sign up

Export Citation Format

Share Document