self similar
Recently Published Documents


TOTAL DOCUMENTS

7117
(FIVE YEARS 1026)

H-INDEX

108
(FIVE YEARS 9)

Author(s):  
Medhal Bharathraj Kumar ◽  
Praveen Jayappa

Microstrip antenna is broadly used in the modern communication system due to its significant features such as light weight, inexpensive, low profile, and ease of integration with radio frequency devices. The fractal shape is applied in antenna geometry to obtain the ultra-wideband antennas. In this paper, the sierpinski carpet fractal monopole antenna (SCFMA) is developed for base case, first iteration and second iteration to obtain the wideband based on its space filling and self-similar characteristics. The dimension of the monopole patch size is optimized to minimize the overall dimension of the fractal antenna. Moreover, the optimized planar structure is proposed using the microstrip line feed. The monopole antenna is mounted on the FR4 substrate with the thickness of 1.6 mm with loss tangent of 0.02 and relative permittivity of 4.4. The performance of this SCFMA is analyzed in terms of area, bandwidth, return loss, voltage standing wave ratio, radiation pattern and gain. The proposed fractal antenna achieves three different bandwidth ranges such as 2.6-4.0 GHz, 2.5-4.3 GHz and 2.4-4.4 GHz for base case, first and second iteration respectively. The proposed SCFMA is compared with existing fractal antennas to prove the efficiency of the SCFMA design. The area of the SCFMA is 25×20 mm<sup>2</sup>, which is less when compared to the existing fractal antennas.


2022 ◽  
Vol 131 (2) ◽  
pp. 024303
Author(s):  
M. Miniya ◽  
O. Oubram ◽  
A. G. El Hachimi ◽  
L. M. Gaggero-Sager

2022 ◽  
Vol 6 (1) ◽  
pp. 39
Author(s):  
Christoph Bandt ◽  
Dmitry Mekhontsev

Self-similar sets with the open set condition, the linear objects of fractal geometry, have been considered mainly for crystallographic data. Here we introduce new symmetry classes in the plane, based on rotation by irrational angles. Examples without characteristic directions, with strong connectedness and small complexity, were found in a computer-assisted search. They are surprising since the rotations are given by rational matrices, and the proof of the open set condition usually requires integer data. We develop a classification of self-similar sets by symmetry class and algebraic numbers. Examples are given for various quadratic number fields.


2022 ◽  
pp. 1-10
Author(s):  
Yohei Yamamoto ◽  
Jun Mitani

Abstract Origami techniques, as folding and unfolding, can be utilized in shrinkable structures. Especially when the crease pattern is rigid foldable, it can be treated as a mechanical linkage of rigid panels connected by hinges. Since rigid foldable crease patterns have the strong geometrical constraint of the facets not being able to stretch or bend, it is difficult to design new crease patterns, and variations of existing patterns are limited. However, it is known that there are cases where crease patterns can be made rigid foldable by adding some slits. This paper proposes a mechanical linkage that folds into a similar flat shape by adding slits. A method is presented of generating rigid foldable crease patterns in arbitrary polygons that fold smaller, and it is confirmed that structures that have a mechanism for shrinking can be generated from these crease patterns by using rigid thick panels and hinges.


Author(s):  
Calvin Djoptoussia ◽  
Camus Gaston Latchio Tiofack ◽  
Alim ◽  
Alidou Mohamadou ◽  
Timoléon Crépin Kofané

Author(s):  
Shanze Gao ◽  
Haizhong Li ◽  
Xianfeng Wang

Abstract In this paper, we investigate closed strictly convex hypersurfaces in ℝ n + 1 {\mathbb{R}^{n+1}} which shrink self-similarly under a large family of fully nonlinear curvature flows by high powers of curvature. When the speed function is given by powers of a homogeneous of degree 1 and inverse concave function of the principal curvatures with power greater than 1, we prove that the only such hypersurfaces are round spheres. We also prove that slices are the only closed strictly convex self-similar solutions to such curvature flows in the hemisphere 𝕊 + n + 1 {\mathbb{S}^{n+1}_{+}} with power greater than or equal to 1.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuji Fujita ◽  
Noritaka Usami

AbstractWe propose a scale-invariant derivative of the h-index as “h-dimension”, which is analogous to the fractal dimension of the h-index for institutional performance analysis. The design of h-dimension comes from the self-similar characteristics of the citation structure. We applied this h-dimension to data of 134 Japanese national universities and research institutes, and found well-performing medium-sized research institutes, where we identified multiple organizations related to natural disasters. This result is reasonable considering that Japan is frequently hit by earthquakes, typhoons, volcanoes and other natural disasters. However, these characteristic institutes are screened by larger universities if we depend on the existing h-index. The scale-invariant property of the proposed method helps to understand the nature of academic activities, which must promote fair and objective evaluation of research activities to maximize intellectual, and eventually economic opportunity.


2022 ◽  
Vol 933 ◽  
Author(s):  
D. Petrolo ◽  
M. Ungarish ◽  
L. Chiapponi ◽  
S. Longo

We present an experimental study of gravity currents in a cylindrical geometry, in the presence of vegetation. Forty tests were performed with a brine advancing in a fresh water ambient fluid, in lock release, and with a constant and time-varying flow rate. The tank is a circular sector of angle $30^\circ$ with radius equal to 180 cm. Two different densities of the vegetation were simulated by vertical plastic rods with diameter $D=1.6\ \textrm{cm}$ . We marked the height of the current as a function of radius and time and the position of the front as a function of time. The results indicate a self-similar structure, with lateral profiles that after an initial adjustment collapse to a single curve in scaled variables. The propagation of the front is well described by a power law function of time. The existence of self-similarity on an experimental basis corroborates a simple theoretical model with the following assumptions: (i) the dominant balance is between buoyancy and drag, parameterized by a power law of the current velocity $\sim |u|^{\lambda-1}u$ ; (ii) the current advances in shallow-water conditions; and (iii) ambient-fluid dynamics is negligible. In order to evaluate the value of ${\lambda}$ (the only tuning parameter of the theoretical model), we performed two additional series of measurements. We found that $\lambda$ increased from 1 to 2 while the Reynolds number increased from 100 to approximately $6\times10^3$ , and the drag coefficient and the transition from $\lambda=1$ to $\lambda=2$ are quantitatively affected by D, but the structure of the model is not.


2022 ◽  
Vol 54 (1) ◽  
pp. 27-56
Author(s):  
Zhong Zheng ◽  
Howard A. Stone

Thin film flows, whether driven by gravity, surface tension, or the relaxation of elastic boundaries, occur in many natural and industrial processes. Applications span problems of oil and gas transport in channels to hydraulic fracture, subsurface propagation of pollutants, storage of supercritical CO2 in porous formations, and flow in elastic Hele–Shaw configurations and their relatives. We review the influence of boundaries on the dynamics of thin film flows, with a focus on gravity currents, including the effects of drainage into the substrate, and the role of the boundaries to confine the flow, force its convergence to a focus, or deform, and thus feedback to alter the flow. In particular, we highlight reduced-order models. In many cases, self-similar solutions can be determined and describe the behaviors in canonical problems at different timescales and length scales, including self-similar solutions of both the first and second kind. Additionally, the time transitions between different solutions are summarized. Where possible, remarks about various applications are provided.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Francesco Noseda ◽  
Ilir Snopce

Abstract Let 𝑝 be a prime. We say that a pro-𝑝 group is self-similar of index p k p^{k} if it admits a faithful self-similar action on a p k p^{k} -ary regular rooted tree such that the action is transitive on the first level. The self-similarity index of a self-similar pro-𝑝 group 𝐺 is defined to be the least power of 𝑝, say p k p^{k} , such that 𝐺 is self-similar of index p k p^{k} . We show that, for every prime p ⩾ 3 p\geqslant 3 and all integers 𝑑, there exist infinitely many pairwise non-isomorphic self-similar 3-dimensional hereditarily just-infinite uniform pro-𝑝 groups of self-similarity index greater than 𝑑. This implies that, in general, for self-similar 𝑝-adic analytic pro-𝑝 groups, one cannot bound the self-similarity index by a function that depends only on the dimension of the group.


Sign in / Sign up

Export Citation Format

Share Document