buffer size
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 100)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 13 (23) ◽  
pp. 4890
Author(s):  
Hannah Ferriby ◽  
Amir Pouyan Nejadhashemi ◽  
Juan Sebastian Hernandez-Suarez ◽  
Nathan Moore ◽  
Josué Kpodo ◽  
...  

Aquaculture in Bangladesh has grown dramatically in an unplanned manner in the past few decades, becoming a major contributor to the rural economy in many parts of the country. National systems for the collection of statistics have been unable to keep pace with these rapid changes, and more accurate, up to date information is needed to inform policymakers. Using Sentinel-2 top of atmosphere reflectance data within Google Earth Engine, we proposed six different strategies for improving fishpond detection as the existing techniques seem unreliable. These techniques include: (1) identification of the best time period for image collection, (2) testing the buffer size for threshold optimization, (3) determining the best combination of image reducer and water-identifying indices, (4) introduction of a convolution filter to enhance edge-detection, (5) evaluating the impact of ground truthing data on machine learning algorithm training, and (6) identifying the best machine learning classifier. Each enhancement builds on the previous one to develop a comprehensive improvement strategy called the enhanced method for fishpond detection. We compared the results of each improvement strategy to known ground truthing fishponds as the metric of success. For machine learning classifiers, we compared the precision, recall, and F1 score to determine the quality of results. Among four machine learning methods studied here, the classification and regression trees performed the best with a precision of 0.738, recall of 0.827, and F1 score of 0.780. Overall, the proposed strategies enhanced fishpond area detection in all districts within the study area.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Li ◽  
Yuanru Cui ◽  
Qian Liu ◽  
Meirui Ren ◽  
Longjiang Guo ◽  
...  

Computer-supported collaborative learning (CSCL) is a learning strategy that gathers students together on campus through mobile application software on intelligent handheld devices to carry out creative exploration learning activities and social interaction learning activities. Learning resource diffusion is a very important constituent part of CSCL mobile software. However, learners will receive or forward a large number of learning resources such that short video, images, or short audio which will increase the energy consumption of forwarding nodes and reduce the message delivery success rate. How to improve the message delivery success rate is an urgent problem to be solved. To solve the aforementioned problem, this paper mainly studies the diffusion of learning resources in campus opportunistic networks based on credibility for CSCL. In campus opportunistic networks, learners who participate in collaborative learning can obtain the desired learning resources through the distribution and sharing of learning resources. Learning resource diffusion depends on the credibility of learners who participate in collaborative learning. However, the existing classical algorithms do not take into account the credibility between learners. Firstly, the concept of credibility in campus opportunistic networks is proposed, and the calculation method of credibility is also presented. Next, the problem of node initialization starvation is solved in this paper. The node initialization starvation phase of collaborative learning is defined and resolved in campus opportunistic networks. Based on the information of familiarity and activity between nodes formed in the process of continuous interaction, a learning resource diffusion mechanism based on node credibility is proposed. Finally, the paper proposes a complete learning resource diffusion algorithm based on credibility for computer-supported collaborative learning (LRDC for short) to improve the delivery success rate of learning resources on the campus. Extensive simulation results show that the average message diffusion success rate of LDRC is higher than that of classical algorithms such as DirectDeliver, Epidemic, FirstContact, and SprayAndWait under the different transmission speed, buffer size, and initial energy, which is averagely improved by 46.83%, 44.43%, and 45.6%, respectively. The scores of LRDC in other aspects are also significantly better than these classical algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1596
Author(s):  
Rong-Rong Lu ◽  
Yang Ma ◽  
Sheng-Hong Lin ◽  
Bingyuan Zhang ◽  
Qinglin Wang ◽  
...  

This paper focuses on an unmanned aerial vehicle (UAV) assisted hybrid free-space optical (FSO)/radio frequency (RF) communication system. Considering the rate imbalance between the FSO and RF links, a buffer is employed at the UAV. Initially, theoretical models of energy consumption and throughput are obtained for the hybrid system. Based on these models, the theoretical expression of the energy efficiency is derived. Then, a nonconvex trajectory optimization problem is formulated by maximizing the energy efficiency of the hybrid system under the buffer constraint, velocity constraint, acceleration constraint, start–end position constraint, and start–end velocity constraint. By using the sequential convex optimization and first-order Taylor approximation, the nonconvex problem is transformed into a convex one. An iterative algorithm is proposed to solve the problem. Numerical results verify the efficiency of the proposed algorithm and also show the effects of buffer size on a UAV’s trajectory.


2021 ◽  
pp. 0958305X2110560
Author(s):  
Hui Yun Rebecca Neo ◽  
Nyuk Hien Wong ◽  
Marcel Ignatius ◽  
Chao Yuan ◽  
Yong Xu ◽  
...  

In a highly populated country like Singapore, a significant percentage of our gross annual electricity consumption stems from our domestic electricity usage in our residential houses. Analyzing and understanding factors that could influence such patterns is thus essential in order to derive effective measures to reduce usage. In this research, 16 identified variables were calculated and considered in the spatial analyses based on various buffer sizes. Both multilinear regression (MLR) and geographically weighted regression (GWR) based analyses were conducted using each residential housing's Energy Unit Intensity (EUI) as the dependent variable. The analyzed results have shown that building characteristics variables have more significant influences towards energy consumption patterns as compared to urban landscape variables. Although little difference was observed across different buffer sizes, more reliable results were obtained from a smaller buffer size of 50 m, suggesting its suitability in using these obtained values for further prediction model analysis and development. Results obtained from the GWR-based analysis have shown a significant improvement in the goodness-of-fit value compared to the MLR-based analysis, effectively indicating that GWR performs better in this context, apart from its better explanation on the contribution of these identified variables to the EUI in this case study.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 510
Author(s):  
Hongzhen Yang ◽  
Xiuwei Mao ◽  
Zilu Fang ◽  
Wanke Chen ◽  
Ting Wang ◽  
...  

In this paper, we propose a novel optical packet switch (OPS) architecture with input concentrators, which employ multi-input single-output optical buffers to aggregate all the incoming traffic into a small size switching fabric. Accordingly, the physical size, the number of the needed wavelength converters, and the economic cost of the total OPS node are decreased dramatically. However, the deployment of input concentrators introduces additional packet loss and delay, except from the contention at the switch output. A Markov model is presented to study the packet loss ratio (PLR) and average packet delay given by the input concentrators. The corresponding closed form expressions are given. The model also demonstrates that the system performance can be greatly improved by increasing the buffer size when the traffic load is not larger than 0.69315. The analytical values are compared with the simulation results. All the obtained results show that the proposed model provides satisfactory approximations under different network scenarios. Moreover, the economic cost savings of the proposed OPS node at the present time and its evolution as a function of time are also discussed in detail. The proposed architecture can also be applied in a packet enhanced optical transport network (OTN).


2021 ◽  
Vol 9 ◽  
Author(s):  
Minal Patel ◽  
April Y. Oh ◽  
Laura A. Dwyer ◽  
Heather D'Angelo ◽  
David G. Stinchcomb ◽  
...  

Introduction: Neighborhood environment factors are relevant for dietary behaviors, but associations between home neighborhood context and disease prevention behaviors vary depending on the definition of neighborhood. The present study uses a publicly available dataset to examine whether associations between neighborhood socioeconomic status (NSES) and fruit/vegetable (FV) consumption vary when NSES is defined by different neighborhood sizes and shapes.Methods: We analyzed data from 1,736 adults with data in GeoFLASHE, a geospatial extension of the National Cancer Institute's Family Life, Activity, Sun, Health, and Eating Study (FLASHE). We examined correlations of NSES values across neighborhood buffer shapes (circular or street network) and sizes (ranging from 400 to 1,200 m) and ran weighted simple and multivariable regressions modeling frequency of FV consumption by NSES for each neighborhood definition. Regressions were also stratified by gender.Results: NSES measures were highly correlated across various neighborhood buffer definitions. In models adjusted for socio-demographics, circular buffers of all sizes and street buffers 750 m and larger were significantly associated with FV consumption frequency for women only.Conclusion: NSES may be particularly relevant for women's FV consumption, and further research can examine whether these associations are explained by access to food stores, food shopping behavior, and/or psychosocial variables. Although different NSES buffers are highly correlated, researchers should conceptually determine spatial areas a priori.


Author(s):  
Harper Baldwin ◽  
William J Landesman ◽  
Benjamin Borgmann-Winter ◽  
David Allen

Abstract Tick-borne disease control and prevention have been largely ineffective compared to the control of other vector-borne diseases. Although control strategies exist, they are costly or ineffective at large spatial scales. We need tools to target these strategies to places of highest tick exposure risk. Here we present a geographic information system (GIS) method for mapping predicted tick exposure risk at a 200 m by 200 m resolution, appropriate for public health intervention. We followed the approach used to map tick habitat suitability over large areas. We used drag-cloth sampling to measure the density of nymphal blacklegged ticks (Ixodes scapularis, Say (Acari: Ixodidae)) at 24 sites in Addison and Rutland Counties, VT, United States. We used a GIS to average habitat, climatological, land-use/land-cover, and abiotic characteristics over 100 m, 400 m, 1,000 m, and 2,000 m buffers around each site to evaluate which characteristic at which buffer size best predicted density of nymphal ticks (DON). The relationships between predictor variables and DON were determined with random forest models. The 100 m buffer model performed best and explained 37.7% of the variation in DON, although was highly accurate at classifying sites as having below or above average DON. This model was applied to Addison County, VT, to predict tick exposure risk at a 200 m resolution. This GIS approach to map predicted DON over a small area with fine resolution, could be used to target public health campaigns and land management practices to reduce human exposure to ticks.


2021 ◽  
Vol 13 (19) ◽  
pp. 11067
Author(s):  
Kaige Lei ◽  
Yifan Wu ◽  
Feng Li ◽  
Jiayu Yang ◽  
Mingtao Xiang ◽  
...  

Understanding the relationship between land use/cover pattern and water quality could provide guidelines for non-point source pollution and facilitate sustainable development. The previous studies mainly relate the land use/cover of the entire region to the water quality at the monitoring sites, but the water quality at monitoring sites did not totally reflect the water environment of the entire basin. In this study, the land use/cover was monitored on Google Earth Engine in Tang-Pu Reservoir basin, China. In order to reflect the water quality of the whole study area, the spatial distribution of the determinants for water quality there, i.e., the total nitrogen and total phosphorus (TN&TP), were simulated by the Soil and Water Assessment Tool (SWAT). The redundancy analysis explored the correlations between land use/cover pattern and simulated TN&TP. The results showed that: (1) From 2009 to 2019, forest was the dominant land cover, and there was little land use/cover change. The landscape fragmentation increased, and the connectivity decreased. (2) About 25% TP concentrations and nearly all the TN concentrations at the monitoring points did not reach drinking water standard, which means nitrogen and phosphorus pollution were the most serious problems. The highest output per unit TN&TP simulated by SWAT were 44.50 kg/hm2 and 9.51 kg/hm2 and occurred in areas with highly fragile landscape patterns. (3) TN&TP correlated positively with cultivated and construction land but negatively with forest. The correlation between forest and TN&TP summited at 500–700-m buffer and construction land at 100-m buffer. As the buffer size increased, the correlation between the cultivated land, and the TN weakened, while the correlation with the TP increased. TN&TP correlated positively with the Shannon’s Diversity Index and negatively with the Contagion Index. This study provides a new perspective for exporting the impact of land use/cover pattern on water quality.


2021 ◽  
Vol 13 (5) ◽  
pp. 89-109
Author(s):  
Eleftherios Stergiou ◽  
John Garofalakis ◽  
Dimitrios Liarokapis ◽  
Spiridoula Margariti

The continuous increase in the complexity of data networks has motivated the development of more effective Multistage Interconnection Networks (MINs) as important factors in providing higher data transfer rates in various switching divisions. In this paper, semi-layer omega-class networks operating with a cut-through forwarding technique are chosen as test-bed subjects for detailed evaluation, and this network architecture is modelled, inspected, and simulated. The results are examined for relevant singlelayer omega networks operating with cut-through or ‘store and forward’ forwarding techniques. Two series of experiments are carried out: one concerns the case of uniform traffic, while the other is related to hotspot traffic. The results quantify the way in which this network outperforms the corresponding singlelayer network architectures for the same network size and buffer size. Furthermore, the effects of the dimensions of the switch elements and their corresponding reliability on the overall interconnection system are investigated, and the complexity and the relevant cost are examined. The data yielded by this investigation can be valuable to MIN engineers and can allow them to achieve more productive networks with lower overall implementation costs.


Sign in / Sign up

Export Citation Format

Share Document