An attribute based encryption scheme with fine-grained attribute revocation

Author(s):  
Qiang Li ◽  
Dengguo Feng ◽  
Liwu Zhang
Author(s):  
Mamta ­ ◽  
Brij B. Gupta

Attribute based encryption (ABE) is a widely used technique with tremendous application in cloud computing because it provides fine-grained access control capability. Owing to this property, it is emerging as a popular technique in the area of searchable encryption where the fine-grained access control is used to determine the search capabilities of a user. But, in the searchable encryption schemes developed using ABE it is assumed that the access structure is monotonic which contains AND, OR and threshold gates. Many ABE schemes have been developed for non-monotonic access structure which supports NOT gate, but this is the first attempt to develop a searchable encryption scheme for the same. The proposed scheme results in fast search and generates secret key and search token of constant size and also the ciphertext components are quite fewer than the number of attributes involved. The proposed scheme is proven secure against chosen keyword attack (CKA) in selective security model under Decisional Bilinear Diffie-Hellman (DBDH) assumption.


2019 ◽  
Vol 9 (15) ◽  
pp. 3074
Author(s):  
Yang Shi ◽  
Zhiyuan Ma ◽  
Rufu Qin ◽  
Xiaoping Wang ◽  
Wujing Wei ◽  
...  

In recent years, attribute-based encryption (ABE) has been widely applied in mobile computing, cloud computing, and the Internet of things, for supporting flexible and fine-grained access control of sensitive data. In this paper, we present a novel attribute-based encryption scheme that is based on bilinear pairing over Barreto and Naehrig curves (BN-curves). The identity-based encryption scheme SM9, which is a Chinese commercial cryptographic standard and a forthcoming part of ISO/IEC11770-3, has been used as the fundamental building block, and thus we first introduce SM9 and present our SM9 implementation in details. Subsequently, we propose the design and implementation of the ABE scheme. Moreover, we also develop a hybrid ABE for achieving lower ciphertext expansion rate when the size of access structure or plaintext is large. The performance and energy consumption of the implementation of the proposed ABE and its hybrid version are evaluated with a workstation, a PC, a smart phone, and an embedded device. The experimental results indicated that our schemes work well on various computing platforms. Moreover, the proposed schemes and their implementations would benefit developers in building applications that fulfill the regulatory compliance with the Chinese commercial cryptographic standard since there is no existing ABE scheme compatible with any Chinese cryptographic standard.


2019 ◽  
Vol 16 (3) ◽  
pp. 797-813
Author(s):  
Qiuting Tian ◽  
Dezhi Han ◽  
Yanmei Jiang

With the development of cloud storage technology, data storage security has become increasingly serious. Aiming at the problem that existing attribute-based encryption schemes do not consider hierarchical authorities and the weight of attribute. A hierarchical authority based weighted attribute encryption scheme is proposed. This scheme will introduce hierarchical authorities and the weight of attribute into the encryption scheme, so that the authorities have a hierarchical relationship and different attributes have different importance. At the same time, the introduction of the concept of weight makes this scheme more flexible in the cloud storage environment and enables fine-grained access control. In addition, this scheme implements an online/offline encryption mechanism to improve the security of stored data. Security proof and performance analysis show that the scheme is safe and effective, and it can resist collusion attacks by many malicious users and authorization centers. It is more suitable for cloud storage environments than other schemes.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Hui Yin ◽  
Yinqiao Xiong ◽  
Jixin Zhang ◽  
Lu Ou ◽  
Shaolin Liao ◽  
...  

Attribute based encryption is a promising technique that achieves flexible and fine-grained data access control over encrypted data, which is very suitable for a secure data sharing environment such as the currently popular cloud computing. However, traditional attribute based encryption fails to provide an efficient keyword based search on encrypted data, which somewhat weakens the power of this encryption technique, as search is usually the most important approach to quickly obtain data of interest from large-scale dataset. To address this problem, attribute based encryption with keyword search (ABKS) is designed to achieve fine-grained data access control and keyword based search, simultaneously, by an ingenious combination of attribute based encryption and searchable encryption. Recently, several ABKS schemes have been constructed in secure cloud storage system for data access control and keyword search. Nonetheless, each of these schemes has some defects such as impractical computation overhead and insufficient access policy expression. To overcome these limitations, in this paper, we design a Key-Policy Searchable Attribute-based Encryption Scheme (KPSABES) based on the full-blown key-policy attribute-based encryption proposed by Vipul Goyal et al. By novel design, our scheme not only inherits all advantages of that scheme but also achieves efficient and secure keyword search over encrypted data. We provide the detailed performance analyses and security proofs for our scheme. Extensive experiments demonstrated that our proposed scheme is superior in many aspects to the similar work.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 66832-66844 ◽  
Author(s):  
Zhenhua Liu ◽  
Jing Xu ◽  
Yan Liu ◽  
Baocang Wang

Sign in / Sign up

Export Citation Format

Share Document