A new descriptive clustering algorithm based on Nonnegative Matrix Factorization

Author(s):  
Zhao Li ◽  
Hong Peng ◽  
Xindong Wu
2021 ◽  
Vol 15 (6) ◽  
pp. 1-18
Author(s):  
Kai Liu ◽  
Xiangyu Li ◽  
Zhihui Zhu ◽  
Lodewijk Brand ◽  
Hua Wang

Nonnegative Matrix Factorization (NMF) is broadly used to determine class membership in a variety of clustering applications. From movie recommendations and image clustering to visual feature extractions, NMF has applications to solve a large number of knowledge discovery and data mining problems. Traditional optimization methods, such as the Multiplicative Updating Algorithm (MUA), solves the NMF problem by utilizing an auxiliary function to ensure that the objective monotonically decreases. Although the objective in MUA converges, there exists no proof to show that the learned matrix factors converge as well. Without this rigorous analysis, the clustering performance and stability of the NMF algorithms cannot be guaranteed. To address this knowledge gap, in this article, we study the factor-bounded NMF problem and provide a solution algorithm with proven convergence by rigorous mathematical analysis, which ensures that both the objective and matrix factors converge. In addition, we show the relationship between MUA and our solution followed by an analysis of the convergence of MUA. Experiments on both toy data and real-world datasets validate the correctness of our proposed method and its utility as an effective clustering algorithm.


2021 ◽  
Vol 7 (10) ◽  
pp. 194
Author(s):  
Pascal Fernsel

Classical approaches in cluster analysis are typically based on a feature space analysis. However, many applications lead to datasets with additional spatial information and a ground truth with spatially coherent classes, which will not necessarily be reconstructed well by standard clustering methods. Motivated by applications in hyperspectral imaging, we introduce in this work clustering models based on Orthogonal Nonnegative Matrix Factorization (ONMF), which include an additional Total Variation (TV) regularization procedure on the cluster membership matrix to enforce the needed spatial coherence in the clusters. We propose several approaches with different optimization techniques, where the TV regularization is either performed as a subsequent post-processing step or included into the clustering algorithm. Finally, we provide a numerical evaluation of 12 different TV regularized ONMF methods on a hyperspectral dataset obtained from a matrix-assisted laser desorption/ionization imaging measurement, which leads to significantly better clustering results compared to classical clustering models.


Sign in / Sign up

Export Citation Format

Share Document