spectral unmixing
Recently Published Documents


TOTAL DOCUMENTS

848
(FIVE YEARS 238)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 183 ◽  
pp. 307-320
Author(s):  
Arun Pattathal V. ◽  
Maitreya Mohan Sahoo ◽  
Alok Porwal ◽  
Arnon Karnieli

2022 ◽  
Vol 88 (1) ◽  
pp. 39-46
Author(s):  
Xinyu Ding ◽  
Qunming Wang

Recently, the method of spatiotemporal spectral unmixing (STSU ) was developed to fully explore multi-scale temporal information (e.g., MODIS –Landsat image pairs) for spectral unmixing of coarse time series (e.g., MODIS data). To further enhance the application for timely monitoring, the real-time STSU( RSTSU) method was developed for real-time data. In RSTSU, we usually choose a spatially complete MODIS–Landsat image pair as auxiliary data. Due to cloud contamination, the temporal distance between the required effective auxiliary data and the real-time data to be unmixed can be large, causing great land cover changes and uncertainty in the extracted unchanged pixels (i.e., training samples). In this article, to extract more reliable training samples, we propose choosing the auxiliary MODIS–Landsat data temporally closest to the prediction time. To deal with the cloud contamination in the auxiliary data, we propose an augmented sample-based RSTSU( ARSTSU) method. ARSTSU selects and augments the training samples extracted from the valid (i.e., non-cloud) area to synthesize more training samples, and then trains an effective learning model to predict the proportions. ARSTSU was validated using two MODIS data sets in the experiments. ARSTSU expands the applicability of RSTSU by solving the problem of cloud contamination in temporal neighbors in actual situations.


2022 ◽  
pp. 110082
Author(s):  
Jiaxin Xu ◽  
Jérôme Bobin ◽  
Anne de Vismes Ott ◽  
Christophe Bobin ◽  
Paul Malfrait

2021 ◽  
Vol 15 (1) ◽  
pp. 270-276
Author(s):  
Ulf Dahlstrand ◽  
Aboma Merdasa ◽  
Jenny Hult ◽  
John Albinsson ◽  
Magnus Cinthio ◽  
...  

Background: Uveal melanoma is treated by either enucleation (removal of the eye) or local eye-sparing therapies, depending on tumor size and whether there are signs of extrascleral growth. Photoacoustic (PA) imaging is a novel imaging modality that provides high-resolution images of the molecular composition of tissues. Objective: In this study, the feasibility of PA imaging for uveal melanomas and detection of extrascleral growth was explored. Methods: Seven enucleated human eyes with uveal melanomas were examined using PA imaging. The spectral signatures of the melanomas and the layers of the normal eyewall were characterized using 59 excitation wavelengths from 680 to 970 nm. Results: Significant differences were seen between the spectra obtained from melanoma and the healthy eyewall. Using spectral unmixing, melanin, hemoglobin and collagen could be mapped out, showing the architecture of the tumor in relation to the eyewall. This allowed visualization of regions where the tumor extended into the extrascleral space. Conclusion: PA imaging appears to have the potential to aid in assessing uveal melanomas and as a diagnostic tool for the detection of extrascleral growth.


2021 ◽  
Vol 13 (24) ◽  
pp. 5044
Author(s):  
Ruiliang Pu ◽  
Stefania Bonafoni

The literature review indicates that a scaling effect does exist in downscaling land surface temperature (DLST) processes, and no substantial methods were specially developed for addressing it. In this research, the main aim is to develop a new method to reduce the scaling effect on DLST maps at high resolutions. A thermal component-based thermal spectral unmixing (TSU) model was modified and a multiple regression (REG) model was adopted to create DLST maps at high resolutions. A combined variance of red and NIR bands at a very high resolution with a difference image between upscaled LST and DLST was used to develop a new method. With two case data sets, LSTs at coarse resolutions were downscaled by using the modified TSU model and the REG model to create DLST results. The new method with a correction term expression (a linear model created by using a semi-empirical approach) was used to improve the DLST maps in the two case study areas. The experimental results indicate that the new method could reduce the root mean square error and the mean absolute error >30% and >33%, respectively, and thus demonstrate that the proposed method was effective and significant, especially reducing the scaling effect on DLST results at very high resolutions. The novel significance for the new method is directly reducing the scaling effect on DLST maps at high resolutions.


2021 ◽  
pp. 108428
Author(s):  
Valentin Leplat ◽  
Nicolas Gillis ◽  
Cédric Févotte
Keyword(s):  

2021 ◽  
Author(s):  
Edward Hamilton Bair ◽  
Jeff Dozier ◽  
Charles Stern ◽  
Adam LeWinter ◽  
Karl Rittger ◽  
...  

Abstract. Intrinsic albedo is the bihemispherical reflectance of a substance with a smooth surface. Conversely, the apparent albedo is the bihemispherical reflectance of the same substance with a rough surface. For snow, the surface is often rough, and these two optical quantities have different uses: intrinsic albedo is used in scattering equations whereas apparent albedo should be used in energy balance models. Complementing numerous studies devoted to surface roughness and its effect on snow reflectance, this work analyzes a timeseries of intrinsic and apparent snow albedos over a season at a sub-alpine site using an automated terrestrial laser scanner to map the snow surface topography. An updated albedo model accounts for shade, and in situ albedo measurements from a field spectrometer are compared to those from a spaceborne multispectral sensor. A spectral unmixing approach using a shade endmember (to address the common problem of unknown surface topography) produces grain size and impurity solutions; the modeled shade fraction is compared to the intrinsic and apparent albedo difference. As expected and consistent with other studies, the results show that intrinsic albedo is consistently greater than apparent albedo. Both albedos decrease rapidly as ablation hollows form during melt, combining effects of impurities on the surface and increasing roughness. Intrinsic broadband albedos average 7 % greater than apparent albedos, with the difference being about 6 % in the near-infrared or 3–4 % if the average (planar) topography is known and corrected. Field measurements of spectral surface reflectance confirm that multispectral sensors see the apparent albedo but lack the spectral resolution to distinguish between darkening from ablation hollows versus low concentrations of impurities. In contrast, measurements from the field spectrometer have sufficient resolution to discern darkening from the two sources. Based on these results, conclusions are: 1) impurity estimates from multispectral sensors are only reliable for relatively dirty snow with high snow fraction; 2) a shade endmember must be used in spectral mixture models, even for in situ spectroscopic measurements; and 3) snow albedo models should produce apparent albedos by accounting for the shade fraction. The conclusion re-iterates that albedo is the most practical snow reflectance quantity for remote sensing.


2021 ◽  
Vol 13 (22) ◽  
pp. 4702
Author(s):  
Marcel Hess ◽  
Thorsten Wilhelm ◽  
Christian Wöhler ◽  
Kay Wohlfarth

On the Moon, in the near infrared wavelength range, spectral diagnostic features such as the 1-μm and 2-μm absorption bands can be used to estimate abundances of the constituent minerals. However, there are several factors that can darken the overall spectrum and dampen the absorption bands. Namely, (1) space weathering, (2) grain size, (3) porosity, and (4) mineral darkening agents such as ilmenite have similar effects on the measured spectrum. This makes spectral unmixing on the Moon a particularly challenging task. Here, we try to model the influence of space weathering and mineral darkening agents and infer the uncertainties introduced by these factors using a Markov Chain Monte Carlo method. Laboratory and synthetic mixtures can successfully be characterized by this approach. We find that the abundance of ilmenite, plagioclase, clino-pyroxenes and olivine cannot be inferred accurately without additional knowledge for very mature spectra. The Bayesian approach to spectral unmixing enables us to include prior knowledge in the problem without imposing hard constraints. Other data sources, such as gamma-ray spectroscopy, can contribute valuable information about the elemental abundances. We here find that setting a prior on TiO2 and Al2O3 can mitigate many of the uncertainties, but large uncertainties still remain for dark mature lunar spectra. This illustrates that spectral unmixing on the Moon is an ill posed problem and that probabilistic methods are important tools that provide information about the uncertainties, that, in turn, help to interpret the results and their reliability.


2021 ◽  
Vol 13 (22) ◽  
pp. 4678
Author(s):  
Yingying Yang ◽  
Taixia Wu ◽  
Yuhui Zeng ◽  
Shudong Wang

Spectral unmixing remains the most popular method for estimating the composition of mixed pixels. However, the spectral-based unmixing method cannot easily distinguish vegetation with similar spectral characteristics (e.g., different forest tree species). Furthermore, in large areas with significant heterogeneity, extracting a large number of pure endmember samples is challenging. Here, we implement a fractional evergreen forest cover-self-adaptive parameter (FEVC-SAP) approach to measure FEVC at the regional scale from continuous intra-year time-series normalized difference vegetation index (NDVI) values derived from moderate resolution imaging spectroradiometer (MODIS) imagery acquired over southern China, an area with a complex mixture of temperate, subtropical, and tropical climates containing evergreen and deciduous forests. Considering the cover of evergreen forest as a fraction of total forest (evergreen forest plus non-evergreen forest), the dimidiate pixel model combined with an index of evergreen forest phenological characteristics (NDVIann-min: intra-annual minimum NDVI value) was used to distinguish between evergreen and non-evergreen forests within a pixel. Due to spatial heterogeneity, the optimal model parameters differ among regions. By dividing the study area into grids, our method converts image spectral information into gray level information and uses the Otsu threshold segmentation method to simulate the appropriate parameters for each grid for adaptive acquisition of FEVC parameters. Mapping accuracy was assessed at the pixel and sub-pixel scales. At the pixel scale, a confusion matrix was constructed with higher overall accuracy (87.5%) of evergreen forest classification than existing land cover products, including GLC 30 and MOD12. At the sub-pixel scale, a strong linear correlation was found between the cover fraction predicted by our method and the reference cover fraction obtained from GF-1 images (R2 = 0.86). Compared to other methods, the FEVC-SAP had a lower estimation deviation (root mean square error = 8.6%). Moreover, the proposed method had greater estimation accuracy in densely than sparsely forested areas. Our results highlight the utility of the adaptive-parameter linear unmixing model for quantitative evaluation of the coverage of evergreen forest and other vegetation types at large scales.


2021 ◽  
Vol 13 (22) ◽  
pp. 4551
Author(s):  
Ming Shen ◽  
Maofeng Tang ◽  
Yingkui Li

As an invasive plant species, kudzu has been spreading rapidly in the Southeastern United States in recent years. Accurate mapping of kudzu is critical for effective invasion control and management. However, the remote detection of kudzu distribution using multispectral images is challenging because of the mixed reflectance and potential misclassification with other vegetation. We propose a three-step classification process to map kudzu in Knox County, Tennessee, using multispectral Sentinel-2 images and the integration of spectral unmixing analysis and phenological characteristics. This classification includes an initial linear unmixing process to produce an overestimated kudzu map, a phenological-based masking to reduce misclassification, and a nonlinear unmixing process to refine the classification. The initial linear unmixing provides high producer’s accuracy (PA) but low user’s accuracy (UA) due to misclassification with grasslands. The phenological-based masking increases the accuracy of the kudzu classification and reduces the domain for further processing. The nonlinear unmixing further refines the kudzu classification via the selection of an appropriate nonlinear model. The final kudzu classification for Knox County reaches relatively high accuracy, with UA, PA, Jaccard, and Kappa index values of 0.858, 0.907, 0.789, and 0.725, respectively. Our proposed method has potential for continuous monitoring of kudzu in large areas.


Sign in / Sign up

Export Citation Format

Share Document