Research on Vegetable Greenhouse Strategy Based on Multi-objective Distributed Constraint Optimization

Author(s):  
Meifeng Shi ◽  
Xin Liao ◽  
Hai Yang ◽  
Yuan Chen ◽  
Jun Wu ◽  
...  
Author(s):  
Alexandre Medi ◽  
◽  
Tenda Okimoto ◽  
Katsumi Inoue ◽  
◽  
...  

A Distributed Constraint Optimization Problem (DCOP) is a fundamental problem that can formalize various applications related to multi-agent cooperation. Many application problems in multi-agent systems can be formalized as DCOPs. However, many real world optimization problems involve multiple criteria that should be considered separately and optimized simultaneously. A Multi-Objective Distributed Constraint Optimization Problem (MO-DCOP) is an extension of a mono-objective DCOP. Compared to DCOPs, there exists few works on MO-DCOPs. In this paper, we develop a novel complete algorithm for solving an MO-DCOP. This algorithm utilizes a widely used method called Pareto Local Search (PLS) to generate an approximation of the Pareto front. Then, the obtained information is used to guide the search thresholds in a Branch and Bound algorithm. In the evaluations, we evaluate the runtime of our algorithm and show empirically that using a Pareto front approximation obtained by a PLS algorithm allows to significantly speed-up the search in a Branch and Bound algorithm.


Sign in / Sign up

Export Citation Format

Share Document