A faster fully homomorphic encryption scheme in big data

Author(s):  
Dan Wang ◽  
Bing Guo ◽  
Yan Shen ◽  
Shun-Jun Cheng ◽  
Yong-Hong Lin
2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Quanbo Qu ◽  
Baocang Wang ◽  
Yuan Ping ◽  
Zhili Zhang

Homomorphic encryption is widely used in the scenarios of big data and cloud computing for supporting calculations on ciphertexts without leaking plaintexts. Recently, Li et al. designed a symmetric homomorphic encryption scheme for outsourced databases. Wang et al. proposed a successful key-recovery attack on the homomorphic encryption scheme but required the adversary to know some plaintext/ciphertext pairs. In this paper, we propose a new ciphertext-only attack on the symmetric fully homomorphic encryption scheme. Our attack improves the previous Wang et al.’s attack by eliminating the assumption of known plaintext/ciphertext pairs. We show that the secret key of the user can be recovered by running lattice reduction algorithms twice. Experiments show that the attack successfully and efficiently recovers the secret key of the randomly generated instances with an overwhelming probability.


Author(s):  
Hu Chen ◽  
Yupu Hu ◽  
Zhizhu Lian ◽  
Huiwen Jia ◽  
Xu An Wang

Fully homomorphic encryption schemes available are not efficient enough to be practical, and a number of real-world applications require only that a homomorphic encryption scheme is somewhat homomorphic, even additively homomorphic and has much larger message space for efficiency. An additively homomorphic encryption scheme based heavily on Smart-Vercauteren encryption scheme (SV10 scheme, PKC 2010) is put forward, where both schemes each work with two ideals I and J. As a contribution of independent interest, a two-element representation of the ideal I is given and proven by factoring prime numbers in a number field. This two-element representation serves as the public key. The authors' scheme allows working over much larger message space than that of SV10 scheme by selecting the ideal I with larger decryption radius to generate public/private key pair, instead of choosing the ideal J as done in the SV10 scheme. The correctness and security of the scheme are shown, followed by setting parameters and computational results. The results indicate that this construction has much larger message space than SV10 scheme.


Sign in / Sign up

Export Citation Format

Share Document