Concentric circle detection based on normalized distance variance and the straight line Hough transform

Author(s):  
Xing Chen ◽  
Ling Lu ◽  
Sheng Yang
2014 ◽  
Vol 519-520 ◽  
pp. 1040-1045
Author(s):  
Ling Fan

This paper makes some improvements on Roberts representation for straight line in space and proposes a coarse-to-fine three-dimensional (3D) Randomized Hough Transform (RHT) for the detection of dim targets. Using range, bearing and elevation information of the received echoes, 3D RHT can detect constant velocity target in space. In addition, this paper applies a coarse-to-fine strategy to the 3D RHT, which aims to solve both the computational and memory complexity problems. The validity of the coarse-to-fine 3D RHT is verified by simulations. In comparison with the 2D case, which only uses the range-bearing information, the coarse-to-fine 3D RHT has a better practical value in dim target detection.


2014 ◽  
Vol 22 (4) ◽  
pp. 1104-1111 ◽  
Author(s):  
叶峰 YE Feng ◽  
陈灿杰 CHEN Can-jie ◽  
赖乙宗 LAI Yi-zong ◽  
陈剑东 CHEN Jian-dong

2020 ◽  
Vol 494 (2) ◽  
pp. 1994-2003
Author(s):  
Shifan Zuo ◽  
Xuelei Chen

ABSTRACT We present a simple and fast method for incoherent dedispersion and fast radio burst (FRB) detection based on the Hough transform, which is widely used for feature extraction in image analysis. The Hough transform maps a point in the time–frequency data to a straight line in the parameter space and points on the same dispersed f−2 curve to a bundle of lines all crossing at the same point, thus the curve is transformed to a single point in the parameter space, enabling an easier way for the detection of radio burst. By choosing an appropriate truncation threshold, in a reasonably radio quiet environment, i.e. with radio frequency interferences present but not dominant, the computing speed of the method is very fast. Using simulation data of different noise levels, we studied how the detected peak varies with different truncation thresholds. We also tested the method with some real pulsar and FRB data.


Sign in / Sign up

Export Citation Format

Share Document