line features
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 52)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-23
Author(s):  
Nan Jiang ◽  
Debin Huang ◽  
Jing Chen ◽  
Jie Wen ◽  
Heng Zhang ◽  
...  

The precise measuring of vehicle location has been a critical task in enhancing the autonomous driving in terms of intelligent decision making and safe transportation. Internet of Vehicles ( IoV ) is an important infrastructure in support of autonomous driving, allowing real-time road information exchanging and sharing for localizing vehicles. Global positioning System ( GPS ) is widely used in the traditional IoV system. GPS is unable to meet the key application requirements of autonomous driving due to meter level error and signal deterioration. In this article, we propose a novel solution, named Semi-Direct Monocular Visual-Inertial Odometry using Point and Line Features ( SDMPL-VIO ) for precise vehicle localization. Our SDMPL-VIO model takes advantage of a low-cost Inertial Measurement Unit ( IMU ) and monocular camera, using them as the sensor to acquire the surrounding environmental information. Visual-Inertial Odometry ( VIO ), taking into account both point and line features, is proposed, which is able to deal with both weak texture and dynamic environment. We use a semi-direct method to deal with keyframes and non-keyframes, respectively. Dual sliding window mechanisms can effectively fuse point-line and IMU information. To evaluate our SDMPL-VIO system model, we conduct extensive experiments on both an indoor dataset (i.e., EuRoC) and an outdoor dataset (i.e., KITTI) from the real-world applications, respectively. The experimental results show that the accuracy of SDMPL-VIO proposed by us is better than the mainstream VIO system at present. Especially in the weak texture of the datasets, fast-moving datasets, and other challenging datasets, SDMPL-VIO has a relatively high robustness.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 23
Author(s):  
Tong Zhang ◽  
Chunjiang Liu ◽  
Jiaqi Li ◽  
Minghui Pang ◽  
Mingang Wang

In view of traditional point-line feature visual inertial simultaneous localization and mapping (SLAM) system, which has weak performance in accuracy so that it cannot be processed in real time under the condition of weak indoor texture and light and shade change, this paper proposes an inertial SLAM method based on point-line vision for indoor weak texture and illumination. Firstly, based on Bilateral Filtering, we apply the Speeded Up Robust Features (SURF) point feature extraction and Fast Nearest neighbor (FLANN) algorithms to improve the robustness of point feature extraction result. Secondly, we establish a minimum density threshold and length suppression parameter selection strategy of line feature, and take the geometric constraint line feature matching into consideration to improve the efficiency of processing line feature. And the parameters and biases of visual inertia are initialized based on maximum posterior estimation method. Finally, the simulation experiments are compared with the traditional tightly-coupled monocular visual–inertial odometry using point and line features (PL-VIO) algorithm. The simulation results demonstrate that the proposed an inertial SLAM method based on point-line vision for indoor weak texture and illumination can be effectively operated in real time, and its positioning accuracy is 22% higher on average and 40% higher in the scenario that illumination changes and blurred image.


2021 ◽  
pp. 107185
Author(s):  
Yeqing Zhu ◽  
Rui Jin ◽  
Tai-shan Lou ◽  
Liangyu Zhao
Keyword(s):  

2021 ◽  
Vol 13 (18) ◽  
pp. 3591
Author(s):  
Hanxiao Rong ◽  
Yanbin Gao ◽  
Lianwu Guan ◽  
Alex Ramirez-Serrano ◽  
Xu Xu ◽  
...  

Visual Simultaneous Localization and Mapping (SLAM) technologies based on point features achieve high positioning accuracy and complete map construction. However, despite their time efficiency and accuracy, such SLAM systems are prone to instability and even failure in poor texture environments. In this paper, line features are integrated with point features to enhance the robustness and reliability of stereo SLAM systems in poor texture environments. Firstly, method Edge Drawing lines (EDlines) is applied to reduce the line feature detection time. Meanwhile, the proposed method improves the reliability of features by eliminating outliers of line features based on the entropy scale and geometric constraints. Furthermore, this paper proposes a novel Bags of Word (BoW) model combining the point and line features to improve the accuracy and robustness of loop detection used in SLAM. The proposed PL-BoW technique achieves this by taking into account the co-occurrence information and spatial proximity of visual words. Experiments using the KITTI and EuRoC datasets demonstrate that the proposed stereo Point and EDlines SLAM (PEL-SLAM) achieves high accuracy consistently, including in challenging environments difficult to sense accurately. The processing time of the proposed method is reduced by 9.9% and 4.5% when compared to the Point and Line SLAM (PL-SLAM) and Point and stereo Point and Line based Visual Odometry (sPLVO) methods, respectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zirui Guo ◽  
Huimin Lu ◽  
Qinghua Yu ◽  
Ruibin Guo ◽  
Junhao Xiao ◽  
...  

Purpose This paper aims to design a novel feature descriptor to improve the performance of feature matching in challenge scenes, such as low texture and wide-baseline scenes. Common descriptors are not suitable for low texture scenes and other challenging scenes mainly owing to encoding only one kind of features. The proposed feature descriptor considers multiple features and their locations, which is more expressive. Design/methodology/approach A graph neural network–based descriptors enhancement algorithm for feature matching is proposed. In this paper, point and line features are the primary concerns. In the graph, commonly used descriptors for points and lines constitute the nodes and the edges are determined by the geometric relationship between points and lines. After the graph convolution designed for incomplete join graph, enhanced descriptors are obtained. Findings Experiments are carried out in indoor, outdoor and low texture scenes. The experiments investigate the real-time performance, rotation invariance, scale invariance, viewpoint invariance and noise sensitivity of the descriptors in three types of scenes. The results show that the enhanced descriptors are robust to scene changes and can be used in wide-baseline matching. Originality/value A graph structure is designed to represent multiple features in an image. In the process of building graph structure, the geometric relation between multiple features is used to establish the edges. Furthermore, a novel hybrid descriptor for points and lines is obtained using graph convolutional neural network. This enhanced descriptor has the advantages of both point features and line features in feature matching.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4604
Author(s):  
Fei Zhou ◽  
Limin Zhang ◽  
Chaolong Deng ◽  
Xinyue Fan

Traditional visual simultaneous localization and mapping (SLAM) systems rely on point features to estimate camera trajectories. However, feature-based systems are usually not robust in complex environments such as weak textures or obvious brightness changes. To solve this problem, we used more environmental structure information by introducing line segments features and designed a monocular visual SLAM system. This system combines points and line segments to effectively make up for the shortcomings of traditional positioning based only on point features. First, ORB algorithm based on local adaptive threshold was proposed. Subsequently, we not only optimized the extracted line features, but also added a screening step before the traditional descriptor matching to combine the point features matching results with the line features matching. Finally, the weighting idea was introduced. When constructing the optimized cost function, we allocated weights reasonably according to the richness and dispersion of features. Our evaluation on publicly available datasets demonstrated that the improved point-line feature method is competitive with the state-of-the-art methods. In addition, the trajectory graph significantly reduced drift and loss, which proves that our system increases the robustness of SLAM.


2021 ◽  
Author(s):  
Hyunjun Lim ◽  
Yeeun Kim ◽  
Kwangik Jung ◽  
Sumin Hu ◽  
Hyun Myung
Keyword(s):  

2021 ◽  
Vol 10 (3) ◽  
pp. 163
Author(s):  
Chenyang Zhang ◽  
Teng Huang ◽  
Rongchun Zhang ◽  
Xuefeng Yi

RGB-D SLAM (Simultaneous Localization and Mapping) generally performs smoothly in a static environment. However, in dynamic scenes, dynamic features often cause wrong data associations, which degrade accuracy and robustness. To address this problem, in this paper, a new RGB-D dynamic SLAM method, PLD-SLAM, which is based on point and line features for dynamic scenes, is proposed. First, to avoid under-over segmentation caused by deep learning, PLD-SLAM combines deep learning for semantic information segmentation with the K-Means clustering algorithm considering depth information to detect the underlying dynamic features. Next, two consistency check strategies are utilized to check and filter out the dynamic features more reasonably. Then, to obtain a better practical performance, point and line features are utilized to calculate camera pose in the dynamic SLAM, which is also different from most published dynamic SLAM algorithms based merely on point features. The optimization model with point and line features is constructed and utilized to calculate the camera pose with higher accuracy. Third, enough experiments on the public TUM RGB-D dataset and the real-world scenes are conducted to verify the location accuracy and performance of PLD-SLAM. We compare our experimental results with several state-of-the-art dynamic SLAM methods in terms of average localization errors and the visual difference between the estimation trajectories and the ground-truth trajectories. Through the comprehensive comparisons with these dynamic SLAM schemes, it can be fully demonstrated that PLD-SLAM can achieve comparable or better performances in dynamic scenes. Moreover, the feasibility of camera pose estimation based on both point features and line features has been proven by the corresponding experiments from a comparison with our proposed PLD-SLAM only based on point features.


Sign in / Sign up

Export Citation Format

Share Document