A Continuous-time Learning Rule for Memristor–based Recurrent Neural Networks

Author(s):  
Gianluca Zoppo ◽  
Francesco Marrone ◽  
Fernando Corinto
1992 ◽  
Vol 03 (01) ◽  
pp. 83-101 ◽  
Author(s):  
D. Saad

The Minimal Trajectory (MINT) algorithm for training recurrent neural networks with a stable end point is based on an algorithmic search for the systems’ representations in the neighbourhood of the minimal trajectory connecting the input-output representations. The said representations appear to be the most probable set for solving the global perceptron problem related to the common weight matrix, connecting all representations of successive time steps in a recurrent discrete neural networks. The search for a proper set of system representations is aided by representation modification rules similar to those presented in our former paper,1 aimed to support contributing hidden and non-end-point representations while supressing non-contributing ones. Similar representation modification rules were used in other training methods for feed-forward networks,2–4 based on modification of the internal representations. A feed-forward version of the MINT algorithm will be presented in another paper.5 Once a proper set of system representations is chosen, the weight matrix is then modified accordingly, via the Perceptron Learning Rule (PLR) to obtain the proper input-output relation. Computer simulations carried out for the restricted cases of parity and teacher-net problems show rapid convergence of the algorithm in comparison with other existing algorithms, together with modest memory requirements.


Sign in / Sign up

Export Citation Format

Share Document