A bacterial foraging global optimization algorithm based on the particle swarm optimization

Author(s):  
Liu XiaoLong ◽  
Li RongJun ◽  
YangPing
2012 ◽  
Vol 512-515 ◽  
pp. 719-722
Author(s):  
Yan Ren ◽  
Yuan Zheng ◽  
Chong Li ◽  
Bing Zhou ◽  
Zhi Hao Mao

The hybrid wind/PV/pumped-storage power system was the hybrid system which combined hybrid wind/PV system and pumped-storage power station. System optimization was very important in the system design process. Particle swarm optimization algorithm was a stochastic global optimization algorithm with good convergence and high accuracy, so it was used to optimize the hybrid system in this paper. First, the system reliability model was established. Second, the particle swarm optimization algorithm was used to optimize the system model in Nanjing. Finally, The results were analyzed and discussed. The optimization results showed that the optimal design method of wind/PV/pumped-storage system based on particle swarm optimization could take into account both the local optimization and the global optimization, which has good convergence high precision. The optimal system was that LPSP (loss of power supply probability) was zero.


2011 ◽  
Vol 07 (03) ◽  
pp. 363-381 ◽  
Author(s):  
MILLIE PANT ◽  
RADHA THANGARAJ ◽  
AJITH ABRAHAM

This paper presents a simple, hybrid two phase global optimization algorithm called DE-PSO for solving global optimization problems. DE-PSO consists of alternating phases of Differential Evolution (DE) and Particle Swarm Optimization (PSO). The algorithm is designed so as to preserve the strengths of both the algorithms. Empirical results show that the proposed DE-PSO is quite competent for solving the considered test functions as well as real life problems.


Sign in / Sign up

Export Citation Format

Share Document