hybrid system
Recently Published Documents





2022 ◽  
Vol 149 ◽  
pp. 107853
Simitha S ◽  
Shinto M Francis ◽  
Ajith Ramachandran ◽  
Jesly Jacob ◽  
Vibin Ipe Thomas

Dana Khwailleh ◽  
Firas Al-balas

The rapid growth of internet of things (IoT) in multiple areas brings research challenges closely linked to the nature of IoT technology. Therefore, there has been a need to secure the collected data from IoT sensors in an efficient and dynamic way taking into consideration the nature of collected data due to its importance. So, in this paper, a dynamic algorithm has been developed to distinguish the importance of data collected and apply the suitable security approach for each type of data collected. This was done by using hybrid system that combines block cipher and stream cipher systems. After data classification using machine learning classifiers the less important data are encrypted using stream cipher (SC) that use rivest cipher 4 algorithm, and more important data encrypted using block cipher (BC) that use advanced encryption standard algorithm. By applying a performance evaluation using simulation, the proposed method guarantees that it encrypts the data with less central processing unit (CPU) time with improvement in the security over the data by using the proposed hybrid system.

Sukarno Budi Utomo ◽  
Iwan Setiawan ◽  
Berkah Fajar ◽  
Sonny Hady Winoto ◽  
Arief Marwanto

The lack of wind speed capacity and the emission of photons from sunlight are the problem in a hybrid system of photovoltaic (PV) panels and wind turbines. To overcome this shortcoming, the incremental conductance (IC) algorithm is applied that could control the converter work cycle and the switching of the buck boost therefore maximum efficiency of maximum power point tracking (MPPT) is reached. The operation of the PV-wind hybrid system, consisting of a 100 W PV array device and a 400 W wind subsystem, 12 V/100 Ah battery energy storage and LED, the PV-wind system requires a hybrid controller for battery charging and usage and load lamp and it’s conducted in experimental setup. The experimental has shown that an average increase in power generated was 38.8% compared to a single system of PV panels or a single wind turbine sub-system. Therefore, the potential opportunities for increasing power production in the tropics wheather could be carried out and applied with this model.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 468
Jorge Olmedo-González ◽  
Guadalupe Ramos-Sánchez ◽  
Erika Paola Garduño-Ruiz ◽  
Rosa de Guadalupe González-Huerta

Stand-alone systems in remote regions require the utilization of renewable resources; however, their natural intermittence requires the implementation of energy-storage systems that allow a continuous power supply. More than one renewable source is usually available at the same site. Thus, the choice of a hybrid system seems viable. It is relevant to study hybrid systems as they could reduce energy storage; however, sizing the hybrid system might have several implications, not only for the available daily energy, but also for the required daily energy storage and surplus seasonal energy. In this work, we present a case study of a stand-alone, conventional household powered by photovoltaic and marine-current-energy systems in Cozumel, Mexico. The analysis of different hybridization degrees serves as a guidance tool to decide whether hybrid systems are required for a specific situation; in contrast to previous approaches, where ideal consumption and generation profiles have been utilized, yearlong profiles were utilized here. The renewable potential data were obtained on site at an hourly resolution; requirements such as size of and cycles in the daily and seasonal energy storage were analyzed according to the degree of participation or hybridization of the proposed renewable systems through an algorithm that evaluates power generation and daily consumption throughout the year. A further analysis indicated that marine-current-energy implementation reduces the size of the daily energy-storage system by 79% in comparison to the use of only a photovoltaic system due to the similarity between the energy-demand profile and the marine-current-energy production profile. The results indicate that a greater participation of marine currents can help decrease daily storage while increasing seasonal storage by 16% compared to using only solar energy. On the other hand, hybridization enabled a reduction in the number of daily charge and discharge cycles at 0.2 hybridization degrees. It also allowed us to reduce the seasonal energy storage by 38% at 0.6 hybridization degrees with respect to only using energy from marine currents. Afterwards, energy-storage technologies were evaluated using the TOPSIS Multi-Criteria Decision Analysis to validate the best-suited technology for the energy-storage system. The evaluation considered the characteristics of the technology and the periods of energy storage. In this work, hybrid storage systems were mandatory since, for daily storage, lithium-ion batteries are better suited, while for seasonal storage, hydrogen-producing systems are more suitable to manage the amount of energy and the storage duration due to the high seasonal renewable-energy variations.

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 289
Sharifah Nurfadhlin Afifah Syed Azhar ◽  
Siti Efliza Ashari ◽  
Norhazlin Zainuddin ◽  
Masriana Hassan

Advanced hybrid component development in nanotechnology provides superior functionality in the application of scientific knowledge for the drug delivery industry. The purpose of this paper is to review important nanohybrid perspectives in drug delivery between nanostructured lipid carriers (NLC) and hydrogel systems. The hybrid system may result in the enhancement of each component’s synergistic properties in the mechanical strength of the hydrogel and concomitantly decrease aggregation of the NLC. The significant progress in nanostructured lipid carriers–hydrogels is reviewed here, with an emphasis on their preparation, potential applications, advantages, and underlying issues associated with these exciting materials.

Sign in / Sign up

Export Citation Format

Share Document