Japanese phonetic feature extraction for automatic speech recognition

Author(s):  
Manoj Banik ◽  
Qamrun Nahar Eity ◽  
Nusrat Jahan Lisa ◽  
Foyzul Hassan ◽  
Aloke Kumar Saha ◽  
...  
2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Emanuele Principi ◽  
Simone Cifani ◽  
Rudy Rotili ◽  
Stefano Squartini ◽  
Francesco Piazza

One of the big challenges in the field of Automatic Speech Recognition (ASR) consists in developing suitable solutions able to work properly also in adverse acoustic conditions, like in presence of additive noise and/or in reverberant rooms. Recently a certain attention has been paid to deeply integrate the noise suppressor in the feature extraction pipeline. In this paper, different single-channel MMSE-based noise reduction schemes have been implemented both in the frequency and cepstral domains and the related recognition performances evaluated on the AURORA2 and AURORA4 databases, therefore providing a useful reference for the scientific community.


2013 ◽  
Vol PP (99) ◽  
pp. 1-18 ◽  

In recent years, a number of feature extraction procedures for automatic speech recognition (ASR) systems have been based on models of human auditory processing, and one often hears arguments in favor of implementing knowledge of human auditory perception and cognition into machines for ASR. This paper takes a reverse route, and argues that the engineering techniques for automatic recognition of speech that are already in widespread use are often consistent with some well-known properties of the human auditory system.


Author(s):  
Mohit Dua ◽  
Pawandeep Singh Sethi ◽  
Vinam Agrawal ◽  
Raghav Chawla

Introduction: An Automatic Speech Recognition (ASR) system enables to recognize the speech utterances and thus can be used to convert speech into text for various purposes. These systems are deployed in different environments such as clean or noisy and are used by all ages or types of people. These also present some of the major difficulties faced in the development of an ASR system. Thus, an ASR system need to be efficient, while also being accurate and robust. Our main goal is to minimize the error rate during training as well as testing phases, while implementing an ASR system. Performance of ASR depends upon different combinations of feature extraction techniques and back-end techniques. In this paper, using a continuous speech recognition system, the performance comparison of different combinations of feature extraction techniques and various types of back-end techniques has been presented Methods: Hidden Markov Models (HMMs), Subspace Gaussian Mixture Models (SGMMs) and Deep Neural Networks (DNNs) with DNN-HMM architecture, namely Karel's, Dan's and Hybrid DNN-SGMM architecture are used at the back-end of the implemented system. Mel frequency Cepstral Coefficient (MFCC), Perceptual Linear Prediction (PLP), and Gammatone Frequency Cepstral coefficients (GFCC) are used as feature extraction techniques at the front-end of the proposed system. Kaldi toolkit has been used for the implementation of the proposed work. The system is trained on the Texas Instruments-Massachusetts Institute of Technology (TIMIT) speech corpus for English language Results: The experimental results show that MFCC outperforms GFCC and PLP in noiseless conditions, while PLP tends to outperform MFCC and GFCC in noisy conditions. Furthermore, the hybrid of Dan's DNN implementation along with SGMM performs the best for the back-end acoustic modeling. The proposed architecture with PLP feature extraction technique in the front end and hybrid of Dan's DNN implementation along with SGMM at the back end outperforms the other combinations in a noisy environment. Conclusion: Automatic Speech recognition has numerous applications in our lives like Home automation, Personal assistant, Robotics etc. It is highly desirable to build an ASR system with good performance. The performance Automatic Speech Recognition is affected by various factors which include vocabulary size, whether system is speaker dependent or independent, whether speech is isolated, discontinuous or continuous, adverse conditions like noise. The paper presented an ensemble architecture that uses PLP for feature extraction at the front end and a hybrid of SGMM + Dan's DNN in the backend to build a noise robust ASR system Discussion: The presented work in this paper discusses the performance comparison of continuous ASR systems developed using different combinations of front-end feature extraction (MFCC, PLP, and GFCC) and back-end acoustic modeling (mono-phone, tri-phone, SGMM, DNN and hybrid DNN-SGMM) techniques. Each type of front-end technique is tested in combination with each type of back-end technique. Finally, it compares the results of the combinations thus formed, to find out the best performing combination in noisy and clean conditions


Sign in / Sign up

Export Citation Format

Share Document