hybrid feature extraction
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 63)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Emir Akcin ◽  
Kemal Sami Isleyen ◽  
Enes Ozcan ◽  
Alaa Ali Hameed ◽  
Erdal Alimovski ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 2588-2597
Author(s):  
Dalia Mohammad Toufiq ◽  
Ali Makki Sagheer ◽  
Hadi Veisi

The Identification of brain tumors is a critical step that relies on the expertise and abilities of the physician. In order to enable radiologists to spot brain tumors, an automated tumor arrangement is extremely important. This paper presents a technique for MR brain image segmentation and classification to identify images as normal and abnormal. The proposed technique is a hybrid feature extraction submitted to enhance the classification results and basically consists of three stages. The first stage is used a 3-level of discrete wavelet transform (DWT) to extract image characteristics. In the second stage, the principle component analysis (PCA) is applied to reduce the size of characteristics. Finally, a random forest classifier (RF) was used with a feature selection for identification. 181 MR brain images are collected (81 normal and 100 abnormal), in distinguishing normal and abnormal tissues, the experimental results obtained an accuracy of 98%, the sensitivity achieved is 99.2%, specificity achieved is 97.8%, and showed the effectiveness of the proposed technique compared with many kinds of literature. The results show that the 3L-DWT+PCA+RF still achieved the best classification results. The proposed model could apply to the brain MRI sphere classification, which will help doctors to diagnose a tumor if it is normal or abnormal in certain degrees. 


2021 ◽  
Vol 11 (10) ◽  
pp. 2558-2565
Author(s):  
K. Kavinkumar ◽  
T. Meeradevi

Brain tumors Analysis is problematic somewhat due to varied size, shape, location of tumor and the appearance and presence of brain tumor. Clinicians and radiologist have difficulty in identifying the tumor type. An efficient hybrid feature extraction method to classify the type of tumor accurately as meningioma, gliomas and pituitary tumor using SVM (support vector machine) classifier is proposed. The modified Non-Local Means (NLM) filter may be effectively used to get the pure image. The NLM filter is compared with common filters like median and wiener. From the denoised image the classification is done by training SVM using the texture features from the hybrid and efficient feature extraction technique.The accuracy of the classification is calculated and the SVM classifier training individual type of texture features and also with combined texture features and the performance is analyzed.


2021 ◽  
Vol 1997 (1) ◽  
pp. 012018
Author(s):  
H Ali ◽  
A F Ahmad Zaidi ◽  
W K Wan Ahmad ◽  
M S Zanar Azalan ◽  
T S Tengku Amran ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1148
Author(s):  
Ilok Jung ◽  
Jongin Lim ◽  
Huykang Kim

The number of studies on applying machine learning to cyber security has increased over the past few years. These studies, however, are facing difficulties with making themselves usable in the real world, mainly due to the lack of training data and reusability of a created model. While transfer learning seems like a solution to these problems, the number of studies in the field of intrusion detection is still insufficient. Therefore, this study proposes payload feature-based transfer learning as a solution to the lack of training data when applying machine learning to intrusion detection by using the knowledge from an already known domain. Firstly, it expands the extracting range of information from header to payload to accurately deliver the information by using an effective hybrid feature extraction method. Secondly, this study provides an improved optimization method for the extracted features to create a labeled dataset for a target domain. This proposal was validated on publicly available datasets, using three distinctive scenarios, and the results confirmed its usability in practice by increasing the accuracy of the training data created from the transfer learning by 30%, compared to that of the non-transfer learning method. In addition, we showed that this approach can help in identifying previously unknown attacks and reusing models from different domains.


Sign in / Sign up

Export Citation Format

Share Document