A simulation-based modeling approach to assess the multi-echelon supply chain network design

Author(s):  
I. U. Munasinghe ◽  
T. D. Rupasinghe ◽  
Ruwan Wickramarachchi
2021 ◽  
Vol 28 (97) ◽  
pp. 284-318
Author(s):  
Michael C. Jones ◽  
Thomas A. Mazzuchi ◽  
Shahram Sarkani

The Department of Defense (DoD) operates a world-wide supply chain, which in 2017 contained nearly 5 million items collectively valued at over $90 billion. Since at least 1990, designing and operating this supply chain, and adapting it to ever-changing military requirements, are highly complex and tightly coupled problems, which the highest levels of DoD recognize as weaknesses. Military supply chains face a wide range of challenges. Decisions made at the operational and tactical levels of logistics can alter the effectiveness of decisions made at the strategic level. Decisions must be made with incomplete information. As a result, practical solutions must simultaneously incorporate decisions made at all levels as well as take into account the uncertainty faced by the logistician. The design of modern military supply chains, particularly for large networks where many values are not known precisely, is recognized as too complex for many techniques found in the academic literature. Much of the literature in supply chain network design makes simplifying assumptions, such as constant per-unit transportation costs regardless of the size of the shipment, the shipping mode selected, the time available for the delivery, or the route taken. This article avoids these assumptions to provide an approach the practitioner can use when designing and adapting supply chain networks. This research proposes a simulation-based optimization approach to find a near-optimal solution to a large supply chain network design problem of the scale faced by a theater commander, while recognizing the complexity and uncertainty that the practicing military logistician must deal with.


2017 ◽  
Vol 11 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Christos Keramydas ◽  
Ioannis Mallidis ◽  
Rommert Dekker ◽  
Dimitrios Vlachos ◽  
Eleftherios Iakovou

Author(s):  
Nasrin Mohabbati-Kalejahi ◽  
Alexander Vinel

Hazardous materials (hazmat) storage and transportation pose threats to people’s safety and the environment, which creates a need for governments and local authorities to regulate such shipments. This paper proposes a novel mathematical model for what is termed the hazmat closed-loop supply chain network design problem. The model, which can be viewed as a way to combine several directions previously considered in the literature, includes two echelons in the forward direction (production and distribution centers), three echelons in the backward direction (collection, recovery, and disposal centers), and emergency response team positioning. The two objectives of minimizing the strategic, tactical, and operational costs as well as the risk exposure on road networks are considered in this model. Since the forward flow of hazmat is directly related to the reverse flow, and since hazmat accidents can occur at all stages of the lifecycle (storage, shipment, loading, and unloading, etc.), it is argued that such a unified framework is essential. A robust framework is also presented to hedge the optimization model in case of demand and return uncertainty. The performance of both models is evaluated based on a standard dataset from Albany, NY. Considering the trade-offs between cost and risk, the results demonstrate the design of efficient hazmat closed-loop supply chain networks where the risk exposure can be reduced significantly by employing the proposed models.


Sign in / Sign up

Export Citation Format

Share Document