scholarly journals It's Hard for Neural Networks to Learn the Game of Life

Author(s):  
Jacob M. Springer ◽  
Garrett T. Kenyon
Keyword(s):  
1999 ◽  
Vol 09 (10) ◽  
pp. 2105-2126 ◽  
Author(s):  
TAO YANG ◽  
LEON O. CHUA

Small-world phenomenon can occur in coupled dynamical systems which are highly clustered at a local level and yet strongly coupled at the global level. We show that cellular neural networks (CNN's) can exhibit "small-world phenomenon". We generalize the "characteristic path length" from previous works on "small-world phenomenon" into a "characteristic coupling strength" for measuring the average coupling strength of the outputs of CNN's. We also provide a simplified algorithm for calculating the "characteristic coupling strength" with a reasonable amount of computing time. We define a "clustering coefficient" and show how it can be calculated by a horizontal "hole detection" CNN, followed by a vertical "hole detection" CNN. Evolutions of the game-of-life CNN with different initial conditions are used to illustrate the emergence of a "small-world phenomenon". Our results show that the well-known game-of-life CNN is not a small-world network. However, generalized CNN life games whose individuals have strong mobility and high survival rate can exhibit small-world phenomenon in a robust way. Our simulations confirm the conjecture that a population with a strong mobility is more likely to qualify as a small world. CNN games whose individuals have weak mobility can also exhibit a small-world phenomenon under a proper choice of initial conditions. However, the resulting small worlds depend strongly on the initial conditions, and are therefore not robust.


Sign in / Sign up

Export Citation Format

Share Document