On the linearization of Volterra nonlinear systems using third-order inverses in the digital frequency-domain

Author(s):  
S.W. Nam ◽  
E.J. Powers
2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Jing He ◽  
Changfan Zhang

This paper presents a precision fault reconstruction scheme for a class of nonlinear systems involving unknown input disturbances. First, using the coordinate transformation algorithm, the disturbances and faults of the system are fully decoupled. Therefore, it is possible to eliminate the influence of disturbances to the system, namely, better disturbances robustness. On this basis, the design of a sliding mode state observer makes the most genuine reconstruction realizable, instead of estimation of faults. Furthermore, with the equivalent principle of sliding mode variable structure, the precision reconstruction of arbitrary nonlinear faults is achieved. Finally, the applications of fault reconstruction in a third-order nonlinear theoretical model with disturbances and in a single-link robot system, respectively, have demonstrated the validity of the proposed scheme.


2020 ◽  
Vol 378 ◽  
pp. 125181
Author(s):  
Jiancheng Wang ◽  
Shuping He ◽  
Xiaoli Luan ◽  
Fei Liu

Sign in / Sign up

Export Citation Format

Share Document