systems engineering
Recently Published Documents


TOTAL DOCUMENTS

8565
(FIVE YEARS 1729)

H-INDEX

66
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Alejandro D. Domínguez-García

Discover a comprehensive set of tools and techniques for analyzing the impact of uncertainty on large-scale engineered systems. Providing accessible yet rigorous coverage, it showcases the theory through detailed case studies drawn from electric power application problems, including the impact of integration of renewable-based power generation in bulk power systems, the impact of corrupted measurement and communication devices in microgrid closed-loop controls, and the impact of components failures on the reliability of power supply systems. The case studies also serve as a guide on how to tackle similar problems that appear in other engineering application domains, including automotive and aerospace engineering. This is essential reading for academic researchers and graduate students in power systems engineering, and dynamic systems and control engineering.


SIMULATION ◽  
2022 ◽  
pp. 003754972110699
Author(s):  
José V C Vargas ◽  
Sam Yang ◽  
Juan Carlos Ordonez ◽  
Luiz F Rigatti ◽  
Pedro H R Peixoto ◽  
...  

A simplified three-dimensional mathematical model for electronic packaging cabinets was derived from physical laws. Tridimensionality resulted from the domain division in volume elements (VEs) with uniform properties, each with one temperature, and empirical and theoretical correlations allowed for modeling their energetic interaction, thus producing ordinary differential equations (ODEs) temperatures versus time system. The cabinet (2048 mm × 1974 mm × 850 mm) thermal response with one heat source was measured. Data set 1 with a 1.6-kW power source was used for model adjustment by solving an inverse problem of parameter estimation (IPPE) having the cabinet internal average air velocities as adjustment parameters. Data set 2 obtained with a 3-kW power source validated model results. The converged mesh had a total of 7500 VE. The steady-state solution took between 16 and 19 s of CPU time to reach convergence and less than 3 min to obtain the 6500-s cabinet dynamic response under variable loading conditions, in an Intel CORE i7 computer. After validation, the model was used to study the impact of heat source height on system thermal response. Fundamentally, a sharp minimum junction temperature Tjct,min = 98.5 °C was obtained in the system hot spot at an optimal heat source height, which was 25.7 °C less than the highest calculated value within the investigated range (0.1 m < zjct < 1.66 m) for the 1.6-kW power setting, which characterizes the novelty of the research, and is worth to be pursued, no matter how complex the actual cabinet design may be.


2022 ◽  
Vol 9 (2) ◽  
pp. 75
Author(s):  
Paul Evangelista ◽  
James Schreiner

This special issue of the Industrial and Systems Engineering Review once again showcases the top papers from the annual General Donald R. Keith memorial capstone conference at the United States Military Academy in West Point, NY. Despite continued COVID restrictions, the truly innovative conference included a mix of in-person presentations with over 50 live and remote judges from across academia and industry to create a high-quality event highlighting the undergraduate student team research. After consideration of over 50 academic papers, the eight listed in this issue were selected for publication in this special issue of the journal. The topics discussed are broad and diverse, however decision support within an uncertain and complex environment emerges as a theme. Much of the work completed by industrial and systems engineers focuses on getting decisions right by means of the tools of our trade. The suite of tools surveyed within these papers represents several state-of-the-art methods as well as time-proven techniques within a unique application domain. Military applications dominated several of the papers. Downey et al. studied massive datasets that represent military operational behaviors in training, seeking to better understand military operational capabilities. Ungrady and Dabkowski tackled the complexities of US Army recruiting through the application of fuzzy cognitive maps, searching for causation. Middlebrooks et al. studied military acquisition system decisions, applying system dynamics modeling. Process improvement represented another sub-theme, with continued focus on decision support. Enos et al. applied lean six sigma techniques to manufacturing processes. Katz et al. explored biomedical machine maintenance scheduling, seeking optimal solutions to a complex scheduling task. Kaloudelis et al. developed a pandemic decision support process for universities. Analytics and machine learning techniques applied to the information domain dominated the third sub-theme. Krueger and Enos developed analytics to support ice hockey strategies. Manzonelli et al. applied natural language processing against information operations, seeking to automate the examination of incredible amounts of narrative data that seek to shape beliefs and attitudes. Please join me in congratulating our authors, especially the young undergraduate scholars that provided the primary intellectual efforts that created the contents of this issue. COL Paul F. Evangelista Chief Data Officer United States Military Academy Taylor Hall, 5th Floor West Point, NY 10996 Email: [email protected] James H. Schreiner, PhD, PMP, CPEM, F.ASEM LTC(P), U.S. Army Associate Professor USMA Academy Professor Director, Engineering Management (EM) Program Department of Systems Engineering Head Officer Representative, Army Softball United States Military Academy Room 420 Mahan Hall West Point, NY 10996 Email: [email protected]


Author(s):  
Udo Kannengiesser ◽  
John S. Gero

AbstractThis paper investigates how the core technical processes of the INCOSE model of systems engineering differ from other models of designing used in the domains of mechanical engineering, software engineering and service design. The study is based on fine-grained datasets produced using mappings of the different models onto the function-behaviour-structure (FBS) ontology. By representing every model uniformly, the same statistical analyses can be carried out independently of the domain of the model. Results of correspondence analysis, cumulative occurrence analysis and Markov model analysis show that the INCOSE model differs from the other models in its increased emphasis on requirements and on behaviours derived from structure, in the uniqueness of its verification and validation phases, and in some patterns related to the temporal development and frequency distributions of FBS design issues.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 567
Author(s):  
Adrian Gambier

advanced control system design for large wind turbines is becoming increasingly complex, and high-level optimization techniques are receiving particular attention as an instrument to fulfil this significant degree of design requirements. Multiobjective optimal (MOO) control, in particular, is today a popular methodology for achieving a control system that conciliates multiple design objectives that may typically be incompatible. Multiobjective optimization was a matter of theoretical study for a long time, particularly in the areas of game theory and operations research. Nevertheless, the discipline experienced remarkable progress and multiple advances over the last two decades. Thus, many high-complexity optimization algorithms are currently accessible to address current control problems in systems engineering. On the other hand, utilizing such methods is not straightforward and requires a long period of trying and searching for, among other aspects, start parameters, adequate objective functions, and the best optimization algorithm for the problem. Hence, the primary intention of this work is to investigate old and new MOO methods from the application perspective for the purpose of control system design, offering practical experience, some open topics, and design hints. A very challenging problem in the system engineering application of power systems is to dominate the dynamic behavior of very large wind turbines. For this reason, it is used as a numeric case study to complete the presentation of the paper.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Alberto Partida ◽  
Saki Gerassis ◽  
Regino Criado ◽  
Miguel Romance ◽  
Eduardo Giráldez ◽  
...  

In this article, we model the two most market-capitalised public, open and permissionless blockchain implementations, Bitcoin (BTC) and Ethereum (ETH), as a System of Systems (SoS) of public blockchains. We study the concepts of blockchain, BTC, ETH, complex networks, SoS Engineering and intentional risk. We analyse BTC and ETH from an open SoS perspective through the main properties that seminal System of Systems Engineering (SoSE) references propose. This article demonstrates that these public blockchain implementations create networks that grow in complexity and connect with each other. We propose a methodology based on a complexity management lever such as SoSE to better understand public blockchains such as BTC and ETH and manage their evolution. Our ultimate objective is to improve the resilience of public blockchains against intentional risk: a key requirement for their mass adoption. We conclude with specific measures, based on this novel systems engineering approach, to effectively improve the resilience against intentional risk of the open SoS of public blockchains, composed of a non-inflationary money system, “sound money”, such as BTC, and of a world financial computer system, “a financial conduit”, such as ETH. The goal of this paper is to formulate a SoS that transfers digital value and aspires to position itself as a distributed alternative to the fiat currency-based financial system.


Author(s):  
Maksym Spiryagin ◽  
Qing Wu ◽  
Oldrich Polach ◽  
John Thorburn ◽  
Wenhsi Chua ◽  
...  

AbstractLocomotive design is a highly complex task that requires the use of systems engineering that depends upon knowledge from a range of disciplines and is strongly oriented on how to design and manage complex systems that operate under a wide range of different train operational conditions on various types of tracks. Considering that field investigation programs for locomotive operational scenarios involve high costs and cause disruption of train operations on real railway networks and given recent developments in the rollingstock compliance standards in Australia and overseas that allow the assessment of some aspects of rail vehicle behaviour through computer simulations, a great number of multidisciplinary research studies have been performed and these can contribute to further improvement of a locomotive design technique by increasing the amount of computer-based studies. This paper was focused on the presentation of the all-important key components required for locomotive studies, starting from developing a realistic locomotive design model, its validation and further applications for train studies. The integration of all engineering disciplines is achieved by means of advanced simulation approaches that can incorporate existing AC and DC locomotive designs, hybrid locomotive designs, full locomotive traction system models, rail friction processes, the application of simplified and exact wheel-rail contact theories, wheel-rail wear and rolling contact fatigue, train dynamic behaviour and in-train forces, comprehensive track infrastructure details, and the use of co-simulation and parallel computing. The co-simulation and parallel computing approaches that have been implemented on Central Queensland University’s High-Performance Computing cluster for locomotive studies will be presented. The confidence in these approaches is based on specific validation procedures that include a locomotive model acceptance procedure and field test data. The problems and limitations presented in locomotive traction studies in the way they are conducted at the present time are summarised and discussed.


Author(s):  
Martin Bichler ◽  
Hans Ulrich Buhl ◽  
Johannes Knörr ◽  
Felipe Maldonado ◽  
Paul Schott ◽  
...  

AbstractEurope’s clean energy transition is imperative to combat climate change and represents an economic opportunity to become independent of fossil fuels. As such, the energy transition has become one of the most important, but also one of the most challenging economic and societal projects today. Electricity systems of the past were characterized by price-inelastic demand and only a small number of large electricity generators. The transition towards intermittent renewable energy sources changes this very paradigm. Future electricity systems will consist of many thousands of electricity generators and consumers that actively participate in markets, offering flexibility to balance variable electricity supply in markets with a high spatial and temporal resolution. These structural changes have ample consequences for market operators, generators, industrial consumers as well as prosumers. While a large body of the literature is devoted to the energy transition in engineering and the natural sciences, it has received relatively little attention in the recent business research literature, even though many of the central challenges for a successful energy transition are at the core of business research. Therefore, we provide an up-to-date overview of key questions in electricity market design and discuss how changes in electricity markets lead to new research challenges in business research disciplines such as accounting, business & information systems engineering, finance, marketing, operations management, operations research, and risk management.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jaeyoung Park ◽  
Xiang Zhong ◽  
Yue Dong ◽  
Amelia Barwise ◽  
Brian W. Pickering

Abstract Background ICU operational conditions may contribute to cognitive overload and negatively impact on clinical decision making. We aimed to develop a quantitative model to investigate the association between the operational conditions and the quantity of medication orders as a measurable indicator of the multidisciplinary care team’s cognitive capacity. Methods The temporal data of patients at one medical ICU (MICU) of Mayo Clinic in Rochester, MN between February 2016 to March 2018 was used. This dataset includes a total of 4822 unique patients admitted to the MICU and a total of 6240 MICU admissions. Guided by the Systems Engineering Initiative for Patient Safety model, quantifiable measures attainable from electronic medical records were identified and a conceptual framework of distributed cognition in ICU was developed. Univariate piecewise Poisson regression models were built to investigate the relationship between system-level workload indicators, including patient census and patient characteristics (severity of illness, new admission, and mortality risk) and the quantity of medication orders, as the output of the care team’s decision making. Results Comparing the coefficients of different line segments obtained from the regression models using a generalized F-test, we identified that, when the ICU was more than 50% occupied (patient census > 18), the number of medication orders per patient per hour was significantly reduced (average = 0.74; standard deviation (SD) = 0.56 vs. average = 0.65; SD = 0.48; p < 0.001). The reduction was more pronounced (average = 0.81; SD = 0.59 vs. average = 0.63; SD = 0.47; p < 0.001), and the breakpoint shifted to a lower patient census (16 patients) when at a higher presence of severely-ill patients requiring invasive mechanical ventilation during their stay, which might be encountered in an ICU treating patients with COVID-19. Conclusions Our model suggests that ICU operational factors, such as admission rates and patient severity of illness may impact the critical care team’s cognitive function and result in changes in the production of medication orders. The results of this analysis heighten the importance of increasing situational awareness of the care team to detect and react to changing circumstances in the ICU that may contribute to cognitive overload.


Sign in / Sign up

Export Citation Format

Share Document