scholarly journals Towards Personalized Change Propagation for Collaborative Modeling

Author(s):  
Mohammadreza Sharbaf ◽  
Bahman Zamani ◽  
Gerson Sunye
1998 ◽  
Vol 27 (3) ◽  
pp. 22-27 ◽  
Author(s):  
Timothy Griffin ◽  
Bharat Kumar
Keyword(s):  

Proceedings ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 21
Author(s):  
Yoel Arroyo ◽  
Ana I. Molina ◽  
Miguel A. Redondo ◽  
Jesús Gallardo ◽  
Carmen Lacave

The design and creation of groupware tools is a complex task that usually requires the participation of different stakeholders (software engineers, designers, etc.), either working at the same time or collaborating asynchronously. This paper describes an innovative model-driven development process to support the collaborative modeling of group learning applications, as well as the Computer Aided Software Engineering (CASE) tool that technologically supports it, the Learning Collaborative Interactive Applications Tool (Learn-CIAT) graphical editor. In its development, we applied technologies integrated within the Eclipse platform. The processes and tools described in this paper supply an important contribution to systematize the design and development of these kinds of applications.


2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


Author(s):  
Claudia Eckert ◽  
John Clarkson ◽  
Chris Earl

Design changes can be surprisingly complex. We examine the problems they cause and discuss the problems involved in predicting how changes propagate, based on empirical studies. To assist this analysis we distinguish between (a) a static background of connectivities (b) descriptions of designs, processes, resources and requirements and (c) the dynamics of design tasks acting on descriptions. The background might consist of existing designs and subsystems, or established processes used to create them. The predictability of design change is examined in terms of this model, especially the types and scope of uncertainties and where complexities arise. An industrial example of change propagation is presented in terms of the background (connectivity) - description - action model.


Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 1967-1978
Author(s):  
Xue-Qin Li ◽  
Guang-Chen Bai ◽  
Lu-Kai Song ◽  
Jie Wen

2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Inayat Ullah ◽  
Dunbing Tang ◽  
Qi Wang ◽  
Leilei Yin

Product family (PF) design is a widely used strategy in the industry, as it allows meeting diverse design requirements. Change propagation in any PF is difficult to predict. Consequently, while numerous design change management methodologies presently exist, their application is restricted to a single artifact. This issue is overcome in the present study. The proposed framework explores effective change propagation paths (CPPs) by considering the risks associated with design changes in the PF with the aim of minimizing the overall redesign cost. The propagated risk, which would result in rework, is quantified in terms of change impact and propagation likelihood. Moreover, a design structure matrix (DSM) based mathematical model and an algorithm for its implementation are proposed to investigate the change propagation across the PF. Finally, to demonstrate their effectiveness, a PF of electric kettles is examined in a case study. The study findings confirm that the proposed technique is appropriate for evaluating different CPPs in PF.


1988 ◽  
Vol 9 (2-3) ◽  
pp. 9-21
Author(s):  
Dhanesh Samarasan

Sign in / Sign up

Export Citation Format

Share Document