scholarly journals Managing security requirements patterns using feature diagram hierarchies

Author(s):  
Rocky Slavin ◽  
Jean-Michel Lehker ◽  
Jianwei Niu ◽  
Travis D. Breaux
2015 ◽  
pp. 875-896
Author(s):  
Kristian Beckers ◽  
Isabelle Côté ◽  
Ludger Goeke ◽  
Selim Güler ◽  
Maritta Heisel

Cloud computing systems offer an attractive alternative to traditional IT-systems, because of economic benefits that arise from the cloud's scalable and flexible IT-resources. The benefits are of particular interest for SME's. The reason is that using Cloud Resources allows an SME to focus on its core business rather than on IT-resources. However, numerous concerns about the security of cloud computing services exist. Potential cloud customers have to be confident that the cloud services they acquire are secure for them to use. Therefore, they have to have a clear set of security requirements covering their security needs. Eliciting these requirements is a difficult task, because of the amount of stakeholders and technical components to consider in a cloud environment. Therefore, the authors propose a structured, pattern-based method supporting eliciting security requirements and selecting security measures. The method guides potential cloud customers to model the application of their business case in a cloud computing context using a pattern-based approach. Thus, a potential cloud customer can instantiate our so-called Cloud System Analysis Pattern. Then, the information of the instantiated pattern can be used to fill-out our textual security requirements patterns and individual defined security requirement patterns, as well. The presented method is tool-supported. Our tool supports the instantiation of the cloud system analysis pattern and automatically transfers the information from the instance to the security requirements patterns. In addition, they have validation conditions that check e.g., if a security requirement refers to at least one element in the cloud. The authors illustrate their method using an online-banking system as running example.


2014 ◽  
Vol 5 (2) ◽  
pp. 20-43 ◽  
Author(s):  
Kristian Beckers ◽  
Isabelle Côté ◽  
Ludger Goeke ◽  
Selim Güler ◽  
Maritta Heisel

Cloud computing systems offer an attractive alternative to traditional IT-systems, because of economic benefits that arise from the cloud's scalable and flexible IT-resources. The benefits are of particular interest for SME's. The reason is that using Cloud Resources allows an SME to focus on its core business rather than on IT-resources. However, numerous concerns about the security of cloud computing services exist. Potential cloud customers have to be confident that the cloud services they acquire are secure for them to use. Therefore, they have to have a clear set of security requirements covering their security needs. Eliciting these requirements is a difficult task, because of the amount of stakeholders and technical components to consider in a cloud environment. Therefore, the authors propose a structured, pattern-based method supporting eliciting security requirements and selecting security measures. The method guides potential cloud customers to model the application of their business case in a cloud computing context using a pattern-based approach. Thus, a potential cloud customer can instantiate our so-called Cloud System Analysis Pattern. Then, the information of the instantiated pattern can be used to fill-out our textual security requirements patterns and individual defined security requirement patterns, as well. The presented method is tool-supported. Our tool supports the instantiation of the cloud system analysis pattern and automatically transfers the information from the instance to the security requirements patterns. In addition, they have validation conditions that check e.g., if a security requirement refers to at least one element in the cloud. The authors illustrate their method using an online-banking system as running example.


Author(s):  
Kristian Beckers ◽  
Isabelle Côté ◽  
Ludger Goeke ◽  
Selim Güler ◽  
Maritta Heisel

Cloud computing systems offer an attractive alternative to traditional IT-systems, because of economic benefits that arise from the cloud's scalable and flexible IT-resources. The benefits are of particular interest for SME's. The reason is that using Cloud Resources allows an SME to focus on its core business rather than on IT-resources. However, numerous concerns about the security of cloud computing services exist. Potential cloud customers have to be confident that the cloud services they acquire are secure for them to use. Therefore, they have to have a clear set of security requirements covering their security needs. Eliciting these requirements is a difficult task, because of the amount of stakeholders and technical components to consider in a cloud environment. Therefore, the authors propose a structured, pattern-based method supporting eliciting security requirements and selecting security measures. The method guides potential cloud customers to model the application of their business case in a cloud computing context using a pattern-based approach. Thus, a potential cloud customer can instantiate our so-called Cloud System Analysis Pattern. Then, the information of the instantiated pattern can be used to fill-out our textual security requirements patterns and individual defined security requirement patterns, as well. The presented method is tool-supported. Our tool supports the instantiation of the cloud system analysis pattern and automatically transfers the information from the instance to the security requirements patterns. In addition, they have validation conditions that check e.g., if a security requirement refers to at least one element in the cloud. The authors illustrate their method using an online-banking system as running example.


2012 ◽  
Vol 3 (1) ◽  
pp. 37-61 ◽  
Author(s):  
Takao Okubo ◽  
Haruhiko Kaiya ◽  
Nobukazu Yoshioka

Unlike functional implementations, it is difficult to analyze the impact on security of software enhancements. One of the difficulties is identifying the range of effects on existing software from new security threats, and the other is developing proper countermeasures. The authors propose an analysis method that uses two kinds of security patterns: security requirements patterns for identifying threats and security design patterns for identifying countermeasures at an action class level. With these two patterns and the conventional traceability methodology, developers can estimate and compare the amount of modifications needed for multiple security countermeasures.


2014 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Poonam Rawat ◽  
◽  
Neha Rawat ◽  
Shikha Singh ◽  
Awantika . ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document